全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
立体几何的平行和垂直定理一、空间中的平行问题1、直线与平面平行的判定及其性质(1)判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。(线线平行线面平行)符号表示:(2)性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行符号表示: 作用:利用该定理可解决直线间的平行问题。2、平面与平面平行的判定及其性质(1)判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行),符号表示:(2)性质定理:如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行)符号表示:作用:可以由平面与平面平行得出直线与直线平行3、在寻求平行关系时,利用中位线、平行四边形等知识是非常常见的手段有时也可用“垂直于同一个平面的两条直线平行”进行证明。二、空间中的垂直问题1、线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直:如果一条直线垂直于一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。2、线面垂直判定定理和性质定理判定定理:如果一条直线垂直于一个平面内的两条相交直线,那么这条直线垂直这个平面。(线线垂直线面垂直)性质定理:垂直于同一个平面的两条直线平行。3、面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。4、在证明线线垂直时,经常利用线面垂直线线垂直,同时要注意隐含的垂直关系,如等腰三角形的三线合一、矩形的相邻两边互相垂直、直径所对的圆周角为直角、菱形或正方形的两条对角线互相垂直且平分、边长已知时可利用勾股定理得出该三角形为直角三角形等三、3种空间角1、异面直线的夹角(1)异面直线:既不相交也不平行的直线为异面直线(2)两条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。(3)求异面直线夹角的步骤:先将异面直线进行平移使其相交,接着确定其夹角,最后构造三角形,利用正余弦定理进行计算2、直线和平面所成的角(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。(2)求直线与平面所成角的思路:“一作,二证,三计算”。在“作角”时依定义关键在于找出垂线,进而确定直线在平面内的射影,最后确定直线与平面所成的角3、二面角:(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。(1)二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。(2)直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角1【2014高考北京卷文第17题】如图,在三棱柱中,侧棱垂直于底面,、分别为、的中点.【出处:21教育名师】(1)求证:平面;(2)求证:平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件工程师劳动合同样本
- 2024医院托管合作经营合同
- 2024家电产品配送合同书模板
- 2024标准委托代理合同格式
- 2024下载装饰工程承包合同书
- 2024年纸张产品购买合同
- 员工试用期间工作表现评估
- 2024年劳务派遣服务合作协议
- 600字代办委托协议范本
- 创业孵化基地租赁协议案例
- MOOC 唐宋诗词与传统文化-湖南师范大学 中国大学慕课答案
- 电网建设项目施工项目部环境保护和水土保持标准化管理手册(变电工程分册)
- 2024年中考历史八年级上册重点知识点复习提纲(部编版)
- 小儿过敏性休克课件
- GB/T 144-2024原木检验
- (高清版)TDT 1062-2021 社区生活圈规划技术指南
- 安全生产治本攻坚三年行动方案(2024-2026年)解读
- T-GDWJ 020-2023 医疗机构医疗护理员服务规范
- 弹力袜的使用课件
- 2024年医学高级职称-妇女保健(医学高级)笔试历年真题荟萃含答案
- 子宫内低氧症护理措施
评论
0/150
提交评论