两角和与差的正弦、余弦、正切公式复习教案_第1页
两角和与差的正弦、余弦、正切公式复习教案_第2页
两角和与差的正弦、余弦、正切公式复习教案_第3页
两角和与差的正弦、余弦、正切公式复习教案_第4页
两角和与差的正弦、余弦、正切公式复习教案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角恒等变换教学目标:通过例题的讲解,使学生对两角和差公式的掌握更加牢固,并能逐渐熟悉一些解题的技巧教学内容:进行角的变换,灵活应用基本公式;重点难点:进行角的变换,灵活应用基本公式教学策略与方法:讲述法教学过程:一、复习引入:1两角和与差的正、余弦公式二、讲解范例: 做题技巧总结:三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有:(一)、巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如,等).如(1)已知,那么的值是_(答:);(2)已知,且,求的值(答:);(3)已知为锐角,则与的函数关系为_(答:)(二)、三角函数名互化(切化弦)如(1)求值(答:1);(2)已知,求的值(答:)(三)公式变形使用(。如(1)已知A、B为锐角,且满足,则_(答:);(2)设中,则此三角形是_三角形(答:等边)(四)三角函数次数的降升(降幂公式:,与升幂公式:,)。如(1)若,化简为_(答:);(2)函数的单调递增区间为_(答:)(五)式子结构的转化(对角、函数名、式子结构化同)。如(1)(答:);(2)求证:;(3)化简:(答:)(6)常值变换主要指“1”的变换(等);如已知,求(答:).(7)正余弦“三兄妹”的内存联系“知一求二”:如(1)若 ,则 _(答:),特别提醒:这里;(2)若,求的值。(答:);(3)已知,试用表示的值(答:)。3、辅助角公式中辅助角的确定:(其中角所在的象限由a, b的符号确定,角的值由确定)在求最值、化简时起着重要作用。如(1)若方程有实数解,则的取值范围是_.(答:2,2);(2)当函数取得最大值时,的值是_(答:);(3)如果是奇函数,则=(答:2);(4)求值:_(答:32)巩固练习一、选择题1. 已知,则( )A. B. C. D. 2. 函数的最小正周期是( )A. B. C. D. 5. 函数是( )A. 周期为的奇函数 B. 周期为的偶函数C. 周期为的奇函数 D. 周期为的偶函数6. 已知,则的值为( )A. B. C. D. 二、填空题1. 求值:_. 2. 若则 .3. 函数的最小正周期是_. 4. 已知那么的值为 ,的值为 . 三、解答题1. 已知求的值. 2. 若求的取值范围. 3. 求值:参考答案一、选择题 1. D ,2. D 3. C ,为奇函数,4. B 二、填空题1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论