已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程(复习课1),一元二次方程,定义,解法,应用,(下一次课),定义及一般形式:,只含有一个未知数,未知数的最高次数是_的_式方程,叫做一元二次方程。一般形式:_,二次,整,ax2+bx+c=o (ao),练习一,1、判断下面哪些方程是一元二次方程,练习二,2、把方程(1-x)(2-x)=3-x2 化为一般形式是:_, 其二次项系数是_,一次项系数是_,常数项是_.3、方程(m-2)x|m| +3mx-4=0是关于x的一元二次方程,则 ( )A.m=2 B.m=2 C.m=-2 D.m 2,2x2-3x-1=0,2,-3,-1,C,(1)直接开平方法,(2)配方法,(3)公式法,(4)因式分解法,解一元二次方程的方法有几种?,例:解下列方程,、用直接开平方法:(x+2)2=2、用配方法解方程4x2-8x-5=0,解:两边开平方,得: x+2= 3 x=-23 x1=1, x2=-5,右边开平方后,根号前取“”。,两边加上相等项“1”。,解:移项,得: 3x2-4x-7=0 a=3 b=-4 c=-7 b2-4ac=(-4)2-43(-7)=1000 x1= x2 =,解:原方程化为 (y+2) 2 3(y+2)=0 (y+2)(y+2-3)=0 (y+2)(y-1)=0 y+2=0 或 y-1=0 y1=-2 y2=1,先变为一般形式,代入时注意符号。,把y+2看作一个未知数,变成(ax+b)(cx+d)=0形式。,3、用公式法解方程 3x2=4x+7,4、用分解因式法解方程:(y+2)2=3(y+2), 同除二次项系数化为1;移常数项到右边;两边加上一次项系数一半的平方;化直接开平方形式;解方程。,步骤归纳,配方法步骤, 先化为一般形式;再确定a、b、c,求b2-4ac; 当 b2-4ac 0时,代入公式:,步骤归纳,若b2-4ac0,方程没有实数根。,公式法步骤,右边化为0,左边化成两个因式的积;分别令两个因式为0,求解。,步骤归纳,分解因式法步骤,选用适当方法解下列一元二次方程,1、 (2x+1)2=64 ( 法)2、 (x-2)2-(x+)2=0 ( 法)3、(x-)2 -(4-x)= ( 法)4、 x-x-10= ( 法)5、 x-x-= ( 法)6、 xx-1=0 ( 法)7、 x -x-= ( 法)8、 y2- y-1=0 ( 法),小结:选择方法的顺序是: 直接开平方法 分解因式法 配方法 公式法,分解因式,分解因式,配方,公式,配方,分解因式,公式,直接开平方,练习三,一元二次方程,一元二次方程的定义,一元二次方程的解法,一元二次方程的应用,把握住:一个未知数,最高次数是2, 整式方程,一般形式:ax+bx+c=0(a0),直接开平方法: 适应于形如(x-k) =h(h0)型 配方法: 适应于任何一个一元二次方程公式法: 适应于任何一个一元二次方程因式分解法: 适应于左边能分解为两个一次式的积,右边是0的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地铁建设施工技术方案
- 混凝土工程钢筋绑扎服务协议
- 金融理财基础
- 快递公司运输效率与客户满意度方案
- 腿部肿物切除术后护理
- 水利工程各专业配合施工方案
- 危险品道路运输培训
- 可穿戴电风扇产业规划专项研究报告
- 文化活动中心消防安全制度
- 会展中心物业管理服务方案
- 五年级英语上册Unit1Getupontime!教案陕旅版
- 风机安装工程质量通病及预防措施
- PCB镀层与SMT焊接
- Unit 1 This is my new friend. Lesson 5 课件
- 2019年青年英才培养计划项目申报表
- 剪纸教学课件53489.ppt
- 芳香油的提取
- 劳动法讲解PPT-定稿..完整版
- 企业人才测评发展中心建设方案
- 假如你爱我的正谱
- 佛山岭南新天地项目概况.
评论
0/150
提交评论