3.2.1 直线的点斜式方程(1)_第1页
3.2.1 直线的点斜式方程(1)_第2页
3.2.1 直线的点斜式方程(1)_第3页
3.2.1 直线的点斜式方程(1)_第4页
3.2.1 直线的点斜式方程(1)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2.1直线的点斜式方程,教学目的,使学生掌握点斜式方程及其应用,掌握斜截式方程及其应用,知道什么是直线在y轴上的截距。教学重点:点斜式方程、斜截式方程及其应用。教学难点:斜截式方程的几何意义。,复习与引入,是不是所有直线都有斜率?怎样求解直线的斜率?,1:不是所有直线都有斜率,倾斜角为900的直线没有斜率,900,2:直线的斜率有两种求解方法:,:,根据倾斜角来求,注:当为钝角时,:,根据直线上任意两点的坐标来求,两条直线平行,有斜率情况,无斜率情况,ab,要无都无,两条直线垂直,有斜率情况,无斜率情况,ab,一个没有,一个为0,如果以一个方程的解为坐标的点都上某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,那么,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.,直线方程的概念,新课讲授,已知直线l经过已知点P1(x1,y1),并且它的斜率是k,求直线l的方程。,l,根据经过两点的直线斜率公式,得,由直线上一点和直线的斜率确定的直线方程,叫直线的点斜式方程。,1、直线的点斜式方程:,设点P(x,y)是直线l上不同于P1的任意一点。,1、直线的点斜式方程:,(1)、当直线l的倾斜角是00时,tan00=0,即k=0,这时直线l与x轴平行或重合,l的方程:y-y1=0或y=y1,(2)、当直线l的倾斜角是900时,直线l没有斜率,这时直线l与y轴平行或重合,l的方程:x-x1=0或x=x1,点斜式方程的应用:,例1:一条直线经过点P1(-2,3),倾斜角=450,求这条直线的方程,并画出图形。,解:这条直线经过点P1(-2,3),斜率是k=tan450=1,代入点斜式得,y3=x+2,O,x,y,-5,5,P1,1、写出下列直线的点斜式方程:,练习,2、直线的斜截式方程:,已知直线l的斜率是k,与y轴的交点是P(0,b),求直线方程。,代入点斜式方程,得l的直线方程:y-b=k(x-0),即y=kx+b。,(2),直线l与y轴交点(0,b)的纵坐标b叫做直线l在y轴上的截距。,方程(2)是由直线的斜率k与它在y轴上的截距b确定,所以方程(2)叫做直线的斜截式方程,简称斜截式。,斜截式方程的应用:,例2:斜率是5,在y轴上的截距是4的直线方程。,解:由已知得k=5,b=4,代入斜截式方程,y=5x+4,斜截式方程:y=kx+b几何意义:k是直线的斜率,b是直线在y轴上的截距,练习,3、写出下列直线的斜截式方程:,练习,4、已知直线l过A(3,-5)和B(-2,5),求直线l的方程,解:直线l过点A(3,-5)和B(-2,5),将A(3,-5),k=-2代入点斜式,得,y(5)=2(x3)即2x+y1=0,例题分析:,练习,判断下列各直线是否平行或垂直(1)(2),直线的点斜式,斜截式方程在直线斜率存在时才可以应用。直线方程的最后形式应表示成二元一次方程的一般形式。,总结:,练习,5、求过点(1,2)且与两坐标轴组成一等腰直角三角形的直线方程。,解:直线与坐标轴组成一等腰直角三角形k=1,直线过点(1,2)代入点斜式方程得,y-2=x-1或y(),即0或0,练习,巩固:经过点(-,2)倾斜角是300的直线的方程是(A)y=(x2)(B)y+2=(x)(C)y2=(x)(D)y2=(x)已知直线方程y3=(x4),则这条直线经过的已知点,倾斜角分别是(A)(4,3);/3(B)(3,4);/6(C)(4,3);/6(D)(4,3);/3直线方程可表示成点斜式方程的条件是(A)直线的斜率存在(B)直线的斜率不存在(C)直线不过原点(D)不同于上述答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论