新能源与可再生能源的关键技术与发展趋势_第1页
新能源与可再生能源的关键技术与发展趋势_第2页
新能源与可再生能源的关键技术与发展趋势_第3页
新能源与可再生能源的关键技术与发展趋势_第4页
新能源与可再生能源的关键技术与发展趋势_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新能源与可再生能源的关键技术与发展趋势孟庆梅新能源和可再生能源在我国社会经济可持续发展中具有重要作用,是我国能源发展的重要内容和组成部分。2005年第十届全国人大常委会第十四次会议正式通过了中华人民共和国可再生能源法,将可再生能源的开发利用列为能源发展的优先领域,从而奠定了我国可再生能源事业规划与发展的法律基础,今年颁布的国家中长期科技发展纲要和“十一五”科技发展计划明确提出了国家能源研究和发展战略,将这方面的研究纳入国家863计划等高新技术项目给予重点支持。为此,本刊记者就新能源与可再生能源的关键技术与发展趋势采访了上海海事大学电力传动与控制研究所所长、教授、博导汤天浩。一、新能源发电方式(一)风力发电目前,风力发电现已成为风能利用的主要形式,受到世界各国的高度重视,而且发展速度最快。风力发电通常有三种运行方式:一是独立运行方式,通常是一台小型风力发电机向一户或几户提供电力,它用蓄电池蓄能,以保证无风时的用电;二是风力发电与其他发电方式(如柴油机发电)相结合的联合供电方式,向交通不便的边远山村、沿海岛屿,或地广人稀的草原牧场提供电力;三是并网型风力发电运行方式,安装在有电网且风力资源丰富地区,常常是一处风场安装几十台甚至几百台风力发电机,这是风力发电的主要发展方向。风力发电机组在不同风速条件下工作时,其发电机输出的电压的幅值和频率是变化的,因此需要配置电力电子功率变换器,通过功率变换器的换流控制,使输出电压达到恒压恒频的要求。功率变换器与风力发电机的系统集成有两种方案:直接输出型风力发电系统和双馈型风力发电机系统。图1给出了两种风力发电系统的结构。33=SG蓄电池滤波器变压器电网变频器齿轮箱风力发电机组(a)直接输出型风力发电系统33=DIG蓄电池滤波器变压器电网变频器齿轮箱风力发电机组(b)双馈型风力发电机系统图1 风力发电系统的两种结构(二)太阳能电池自50年代第一块实用的硅太阳电池研制成功,太阳能光电技术已历经了半个世纪的发展。目前占主流的太阳电池是硅太阳电池,它又分单晶硅太阳电池、多晶硅太阳电池(总称晶体硅太阳电池)和非晶硅太阳电池。典型的太阳能供电系统结构如图2所示,通过太阳电池阵列的光电转换,将太阳能转变成电能,再由功率变换器将太阳电池输出的直流电转换成用户所需的电源形式。根据用户要求,功率变换器可以选择直流斩波器进行DC/DC变换,或采用逆变器进行变换DC/AC变换。此外,功率变换装置还应包括蓄电池系统,以平衡用电需求。当阳光充足时,由太阳电池供电,同时向蓄电池充电;当夜晚或阳光稀少时,由蓄电池供电。变流器的电路结构如图2所示。=3=蓄电池滤波器变压器电网变流器太阳电池图2 太阳能供电系统结构(三)燃料电池 燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等2。燃料电池不受卡诺循环限制,能量转换效率高,且具有洁净、无污染、低噪声,模块结构、高功率比、可积木化及连续工作等特性。=3=蓄电池滤波器变压器电网变流器燃料电池燃料电池发电系统的结构如图3所示,系统通过由直流斩波器与逆变器组成的功率变换装置,使燃料电池的输出电压与用户需求相匹配。图3 燃料电池供电系统结构二、关键技术利用新能源发电需要解决的关键问题是电能的转换、电能存储、电能管理和电能质量控制。其核心是采用电力电子技术、自动控制技术、计算机技术和人工智能技术等,特别是上述技术的集成和融合。但是,由于长期形成的学科体系和行业的条块分割,形成制约新能源电力系统广泛应用和发展的主要瓶颈之一。因此,特别需要通过学科交叉研究和开发与新能源发电设备配套的电力电子功率变换器,通过系统集成形成产品,以方便用户。(一)电能变换如上所述,新能源电力系统的共同特征是需要进行电源变换,即通过电力变换装置使发电设备输出的电能在形式上与现有的用电设备的要求相匹配,在品质上满足用户的需求。如何采用电力电子开关器件构造合适的电力变换装置是解决上述问题的根本出路。图4给出了一个采用多电平逆变拓扑构成的组合式三相交流电源。图4 多电平交流逆变电路结构由于新能源电力系统中电能变换主要是DC/DC变换和AC/DC变换两种方式,因此,提高变流效率和功率密度显得尤为重要。软开关技术是减低开关损耗、提高电流密度和转换效率的有效手段,因此需要开发基于软开关的变流器。(二)电能储存由于太阳能、风能等能源受自然环境和气候条件的影响较大,具有不稳定性和不确定性。为了提高电源质量,应该在新能源发电系统中设置储能装置,以便在外部能源充足时储存多余的电能,而在能源不足时提供电能。比如:风力发电机可以通过电感储能器存储风能,改善电网供电质量。除了传统的蓄电池和电感等储能方式外,现代的储能装置有超级电容和飞轮等方式。与电解电容相比,超级电容利用碳电极表面产生的双层电极储能,具有非常高的功率密度和实质的能量密度。如今,超级电容功率密度可高达20kW/kg,充放电时间各为0.1-100分钟。在过去几年,这些器件已应用在消费电子、工业和汽车等许多领域。飞轮储能是利用高速旋转的飞轮惯性存储电能。如果与风力发电机结合,可以在风速很高时,带动飞轮高速旋转;风速降低时,飞轮驱动发电机输出电能。当前如何降低飞轮的摩擦损耗是提高储能效率的关键,利用磁悬浮技术使飞轮转轴稳定的悬浮于空间是一种有效的解决方案。预计飞轮储能装置将在国防、电力、交通等领域具有应用前景。(三)电能管理电源管理系统(PMS)技术是提高电源效率和系统可靠性的新方法。PMS将智能控制和管理的思想引入电力系统,从发电、配电及用电等各个层次,对电能进行分配、监测、控制、管理和安全保护等。其主要功能包括:l 电能分配;l 优化控制;l 状态监测;l 故障诊断;l 容错控制。实现上述功能的核心技术是:计算机技术,如数据库、网络通信、现场总线等;自动控制技术,如过程监控、最优化算法、容错控制等;人工智能,如模式识别、专家系统、模糊逻辑、神经网络、遗传算法等。特别重要的,这些技术的融合,包括各种技术自身内部的融合,以及各种技术之间的融合。例如:整个系统可以采用网络化控制,通过三层网络结构:底层采用现场总线和基于DSP的嵌入式控制器实现实时控制、数据采集和通信;中间层通过分布式计算机监控系统实现系统的状态检测、数据存储、趋势分析和故障报警等功能;上层采用人工智能技术构建智能PMS,实现负荷预测、电能分配、系统优化和能量管理。在功率管理系统(PMS)方面,将在智能优化及安全控制上有所突破。(四)电能质量控制近年来,随着大量非线性元器件的使用,特别是电力电子变流器的广泛应用,造成了电网功率因数降低和谐波畸变等问题。如何治理“电力公害”,提高电能质量成为当前迫切需要解决的重要课题。电能质量控制的主要研究内容是:1 电源谐波检测和分析技术。谐波的测量和分析是实现谐波治理的前提条件,准确的谐波测量和分析能够为谐波的治理提供良好的依据。自提出快速傅里叶变换算法(FFT)以来,基于傅里叶变换的谐波测量便得到了广泛应用。然而基于傅里叶变换的谐波测量要求整周期同步采样,否则会产生频谱泄漏现象和栅栏效应。因此如何减小因同步偏差而引起的测量误差成了众多学者关注的焦点。2 电能质量控制和管理,包括:功率因数校正和滤波器设计。由于传统的无源滤波器体积和重量大、且需针对不同的频率进行设计,功率因数校正(PFC)技术是提高功率因数和降低谐波污染的重要途径。近年来,有源功率因数校正技术(APFC)已成为电力电子领域的研究热点,现已从电路拓朴、控制策略发展到集成模块,首先在单相PFC电路方面取得成果。比如:可用于Buck、Boost、Buck-boost、Cuk等DC/DC基本变换电路的专用或通用的PFC控制器。目前的研究重点在三相PFC控制技术上,比如:单开关、多开关以及软开关三相PFC电路的研制。特别是,软开关技术与PFC技术的融合是发展的新趋势。虽然,目前PFC产品受到功率的限制,但应用于分布式新能源发电系统却是重要机遇。三、发展趋势(一)混合供电系统新能源作为电力系统未来的发展方向是:采用几种新能源发电方式组成混合供电系统,混合供电系统可以选择风力发电与太阳能电池组合,或太阳能与燃料电池组合,也可以将三者组合在一起。另一种混合方式是,利用燃料电池产生的废气或热量,带动透平发电机组成混合电力系统。图5为混合发电系统结构。风力发电机太阳能电池燃料电池变流器变流器变流器电网储能装置监控系统PMS图5 新能源混合供电系统在混合供电系统的研究中,主要研究太阳能、风力以及燃料电池系统的并网发电技术。通过并网输出电压电流的控制方案的优化,运用电流预估计原理使输出性能得到提高;获得最大的效率;通过软件锁相使输出电流同步跟踪电网电压相位;并具有保护和监控等功能,保证了光伏并网发电的安全运行。(二)分布式电源图6为由混合发电装置构成的分布式电力系统。这种分布式供电方式将是未来电力系统发展方向。这种分布式电源,可以达到节能和环保的目的。(b)分布式电力系统图6 分布式新能源混合供电系统四、发展目标新能源和可再生能源产业发展目标是:加速技术和产品的推广应用;增强我国设备制造和生产能力;建立产业化配套服务体系;健全法规和机制,实现新能源和可再生能源开发利用的商业化发展。到2015年新能源和可再生能源年开发量达到4300万吨标准煤,占我国当时能源消费总量的2% (如果包括小水电,则将达到3.6%);其产业将成为国民经济的一个新兴行业,拉动机械、电子、化工、材料等相关行业的发展;对减轻大气污染、改善大气环境质量作用明显,将减少3000多万吨碳的温室气体及200多万吨二氧化硫等污染物的排放;提供近50万个就业岗位,为500多万户边远地区农牧民(约2500多万人口)解决无电问题。为确保上述目标的实现,新能源和可再生能源产业发展规划分以下几个阶段实施:. 20002005年,逐步建立新能源和可再生能源经济激励政策体系以及适应市场经济体制的行业管理体系;建立和实施质量保证、监测、服务体系;加大对重点行业和产品的扶持力度以促进产业发展;新能源和可再生能源的开发利用量在我国商品能源消费总量中占0.7%,达到1300万吨标准煤。. 20062010年,完善可再生能源产业配套技术服务体系,进一步规范市场;完善新能源和可再生能源经济激励政策体系。新能源和可再生能源的开发利用量达到2500万吨标准煤,在我国商品能源消费总量中占1.25%。. 20112015年,大规模推广应用新能源和可再生能源技术,大部分产品实现商业化生产,完善新能源和可再生能源产业体系,使其成为我国国民经济中一个重要的新兴行业,其总产值达到670亿元。新能源和可再生能源的开发利用量达到4300万吨标准煤,占我国当时商品能源消费总量的2%。具体内容和任务如下:(1) 规范市场,促进大型高效太阳能热利用产业发展到2015年全国家庭住宅太阳热水器普及率达20-30%,市场拥有量约2.32亿平方米。形成一批年产200300万平方米规模,并具有较强新产品开发能力的骨干企业。加强产品质量标准的制订,建立具有权威性的国家级太阳热水器产品质量检测中心,对太阳热水器和太阳热水系统中的集热器、水箱、零部件实行质量监督、检测和认证。推动企业不断提高产品质量,增加品种、规格,降低成本,完善服务,创造出一批用户信得过、国内外有较高信誉的名牌产品,开拓国内国际市场,使更多产品打入国际市场。(2)建立太阳电池与应用系统生产体系、降低产品成本集中力量在现有太阳电池生产和应用的基础上,适应国际光电技术发展趋势和国内外市场发展的形势,开拓市场,打破年产量徘徊在2兆瓦左右的局面。通过国家重点扶持,推动第二代太阳电池商业化,形成应用器件配套齐全的太阳光伏产业。2015年全国太阳电池发电系统市场拥有量将达到320兆瓦。通过生产规模的扩大,降低太阳电池生产成本,从而推动市场的发展,形成良性循环。在太阳电池市场中,通讯及工业用光伏系统将从目前的40-50%的市场份额下降到2010年的20-30%,户用及民用光伏系统将从目前的30%上升到40-50%。到2015年中国将开始大规模发展并网式屋顶光伏系统。(3)推动并网风电的商业化发展,加快国产化进程预计2005年并网风电装机将达到300万千瓦, 2010年的发展目标是490万千瓦,2015年达到700万千瓦。为实现这一目标,必须提高国内风力发电设备制造能力,加速风力发电设备国产化进程,形成与风电场建设同步的生产能力,满足国内市场的需求,同时还可以出口。要建立具有自主知识产权的知名品牌,加强对风力发电技术的研究开发,大多数风力发电设备部件要实现国内生产制造,其技术标准和营运质量达到国外同类产品的指标要求,能满足国内风场资源特征及市场需求,形成不同规格的系列化产品。要借鉴国外风力发电机生产的经验,打破行业界限,采用招标方式择优扶持零配件生产厂、整机组装厂,最终实现产品价格、风电场初始投资有较大下降,风力发电成本逐步能与常规发电方式相竞争。在国产化和商业化进程中,要加快形成和建立起风力发电机组质量标准和检测体系。(4)继续做好离网型风力发电技术的普及和推广应用引导小型风力发电机生产企业加大技改力度,提高小型风力发电机组的性能。加强较大容量的离网型风力发电机组关键部件的研制及改进工作,推动风、光互补发电系统的推广应用。通过引进国外先进成熟技术和经验,做好消化、吸收工作。到2015年形成5万台的年生产能力,市场拥有量累计装机10.5万千瓦。为适应国内、国际市场的发展和加强技术管理工作的需要,按照国际通用标准和技术规范,修订并完善我国离网型风力发电的技术规范、标准、试验方法等;同时建立和完善产品质量保证、监督及检测体系。(5)积极推广地热采暖和地热发电技术要尽快解决地热回灌技术,注意开发和生产回灌设备,实现设备成套供应,从而避免地热利用引起的环境污染。加快地热热泵技术的引进和开发,加速国产化。要大力开拓地热采暖市场,到2005、2010、2015年地热采暖面积分别达到1500万、2250万、3000万平方米。要积极推动地热的综合利用。在地热发电方面,2005年前主要是开发利用西藏羊八井深部高温热储,建成西藏羊易地热电站和滇西腾冲高温地热电站,地热装机达到4050兆瓦。到2010年和2015年地热电站累计装机分别为87.5兆瓦和110兆瓦。(6)推进大中型沼气工程建设,开发生物质能高效利用设备大力推动大中型沼气工程建设,进一步提高设计、工艺和自动控制技术水平。到2015年,处理工业有机废水的大中型沼气工程达到2500座,形成年生产沼气能力40亿立方米,相当于343万吨标准煤,年处理工业有机废水37500万立方米。农业废弃物沼气工程到2015年累计建成近4100个,形成年生产沼气能力4.5亿立方米,相当于58万吨标准煤,年处理粪便量1.23亿吨,从而解决全国集约化养殖场的污染治理问题,使粪便得到资源化利用。秸秆气化技术有待进一步改进,近阶段仍将着眼于200个气化集中供气示范工程的建设。在形成成熟可靠技术后,再进一步推广应用。到2015年,累计建成4500个气化站,总产气量达到20亿立方米,相当于57万吨标准煤。(7) 推进新技术产业化目前,初具发展前景的潜在技术还没有成熟实用的产品,难以将潜在需求转变为有效需求,形成产业化发展的市场基础还需要一定的时间。我国已建有8座潮汐发电站,总装机容量10.4兆瓦,但潮汐发电技术仍然只是处于试验和示范阶段。氢作为能源的开发利用技术如作为运输工具和发电的燃料,因无污染而成为一种极具发展前景的替代能源技术。燃料电池作为移动电源是一个具有广阔前景的潜在市场,预计2005年以后将逐步进入实际运用阶段。虽然目前还难以对这些技术制定具体的产业化发展目标,但是应重视这些技术的发展,加强中试的投入和技术引进,并逐步进入示范和发展阶段。一旦这些技术有了突破,达到成熟实用,并具有了一定的市场基础,也要将其纳入产业发展规划来进行推动和扶持。五、制约因素与存在的问题我国有丰富的新能源和可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论