221双曲线及其标准方程_第1页
221双曲线及其标准方程_第2页
221双曲线及其标准方程_第3页
221双曲线及其标准方程_第4页
221双曲线及其标准方程_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

悲伤的双曲线,2.2.1双曲线及其标准方程,复习引入,1、椭圆的定义,和,等于常数,2a(2a|F1F2|0),的点的轨迹.,平面内与两定点F1、F2的距离的,|MF1|+|MF2|=2a(2a|F1F2|0),思考:,2a=|F1F2|时,轨迹是?,2a|F1F2|0),的点的轨迹.,平面内与两定点F1、F2的距离的,|MF1|+|MF2|=2a(2a|F1F2|0),思考:,等于常数,的点M的轨迹是什么呢?,平面内与两定点F1、F2的距离的,差,数学实验,1取一条拉链;,3拉动拉链(M),思考:拉链运动的轨迹是什么?,2如图把它固定在板上的两点F1、F2;,M:|MF1|-|MF2|=2a,M:|MF2|-|MF1|=2a,M:|MF1|-|MF2|=2a,右支,左支,双曲线,这两个定点F1、F2双曲线的焦点;,|F1F2|=2c焦距.,定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2)的点的轨迹叫做双曲线.,(1),注意:,(2)2a0),则F1(-c,0),F2(c,0),常数=2a(a0),若焦点在y轴呢?,焦点在x轴,a,b,c的关系:,c2=a2+b2,(c最大,a,b大小关系不确定),F(0,c),F(c,0),如何判断双曲线焦点的位置呢?,看系数的正负焦点在系数为正的项所对应的坐标轴上(与分母的大小无关),1、双曲线的焦点在轴?,3、双曲线的焦点在轴?,2、双曲线的焦点在轴?,判断以下双曲线的焦点位置:,写出焦点坐标,|MF1|-|MF2|=2a(2a|F1F2|),F(c,0)F(0,c),1、双曲线上的点到(5,0)的距离为15,则P到点(-5,0)的距离是()A.7B.23C.25或7D.7或23,典题分析,D,答:,2.判断下列方程是否表示双曲线?若是,求出及其焦点坐标.,3.是否表示双曲线?,表示焦点在轴上的双曲线;,表示焦点在轴上的双曲线。,分析:,方程表示双曲线,则m的取值范围_.,4.已知方程表示焦点在y轴上的双曲线,则实数m的取值范围是。,若表示双曲线呢?,变式一:,变式二:,1.已知双曲线两个焦点为F1(-5,0)、F2(5,0),双曲线上一点P到F1、F2的距离之差的绝对值等于6,求双曲线的标准方程。,解:因为双曲线焦点在x轴上,所以设它的标准方程为,2c=10,2a=6,c=5,a=3,b2=52-32=16,所求双曲线的标准方程为,练习,10,10,2.已知A,B两地相距800m,在A地听到炮弹爆炸声比在B地晚2s,且声速为340m/s,求炮弹爆炸点的轨迹方程.,分析:首先根据题意,判断轨迹的形状.,解:如图所示,建立直角坐标系xOy,设爆炸点P的坐标为(x,y),则,即2a=680,a=340,因此炮弹爆炸点的轨迹方程为,使A、B两点在x轴上,并且点O与线段AB的中点重合,答:再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用.,若去掉焦点在X轴上的条件呢?,(3)经过点(5,2)与点(10,8),设方程为mx2+ny2=1(mn0),4.求与双曲线x2/4y2/2=1有相同焦点且过点P(2,1)的双曲线方程。,解:设所求的双曲线方程为x2/a2y2/b2=1(a0,b0),解之得a2=b2=3,5.若椭圆与双曲线的焦点相同,则a=,|MF1|-|MF2|=2a(2a|F1F2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论