




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3导数在研究函数中的应用1.3.3函数的最大(小)值与导数,执教老师:易静班级:高二(2),问题一、函数的极值定义,设函数f(x)在点x0附近有定义,,如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0);,函数的极大值与极小值统称为极值.,使函数取得极值的点x0称为极值点,温故而知新,(5)由f(x)在方程f(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况,温故而知新,问题二;求解函数极值的一般步骤:,(1)确定函数的定义域,(2)求函数的导数f(x),(3)求方程f(x)=0的根,(4)用方程f(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格,温故而知新,问题三:观察下列图形,找出函数的极值,函数y=f(x)的极小值:,函数y=f(x)的极大值:,在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题,函数在什么条件下一定有最大、最小值?他们与函数极值关系如何?,极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。,新课讲授,学习目标,1知识与技能:掌握利用导数求函数最值的方法。2.过程与方法:正确理解利用导数研究函数的最值的具体过程。3.情感、态度与价值观:引导学生实现自我探索的特点,自己总结用导数研究函数最值方法和注意事项。,重点难点,重点:利用导数求函数的最值。难点:准确求函数的最值。,在闭区间上的连续函数必有最大值与最小值,观察下列图形,你能找出函数的最值吗?,在开区间内的连续函数不一定有最大值与最小值.,如何求出函数在a,b上的最值?,结论:一般的如果在区间a,b上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。,思考1,观察下列图形,找出函数的最值并总结规律,图1,图3,图2,连续函数在a,b上必有最值;并且在极值点或端点处取到.,观察右边一个定义在区间a,b上的函数y=f(x)的图象:,发现图中_是极小值,_是极大值,在区间上的函数的最大值是_,最小值是_。,f(x1)、f(x3),f(x2),f(b),f(x3),问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?,思考2,追踪练习,(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个最小值.,求f(x)在闭区间a,b上的最值的步骤:,(1)求f(x)在区间(a,b)内极值(极大值或极小值);,方法总结,求函数的最值时,应注意以下几点:,(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.,(2)闭区间a,b上的连续函数一定有最值.开区间(a,b)内的连续函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.,(3)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).,想一想,记一记,4、函数y=x3-3x2,在2,4上的最大值为()(A)-4(B)0(C)16(D)20,C,学以致用,反思:本题属于逆向探究题型:其基本方法最终落脚到比较极值与端点函数值大小上,从而解决问题,往往伴随有分类讨论。,能力提升,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国实时数据库系统行业投资前景及策略咨询研究报告
- 2025网络科技有限公司的劳动合同样本
- 2025加盟合同范本:家具品牌合作协议
- 2025年安徽省高考数学对标命题1 (教师版)
- 2025至2030年中国配线架数据监测研究报告
- 2025合作协议餐饮联盟合同范本
- 2025至2030年中国汽车电瓶充电器数据监测研究报告
- 突发性听觉丧失的护理
- 河南蔬菜温室施工方案
- 智能涂料施工方案怎么写
- 饮食与免疫:如何通过饮食提高免疫力
- 《我不是药神》剧本
- JJF 1101-2019《环境试验设备温度、湿度校准规范》规程
- GB/T 6451-2023油浸式电力变压器技术参数和要求
- 幼儿园中班绘本《城市里最漂亮的巨人》课件
- 医院廉洁行医廉政教育专题课件
- 医务人员职业健康安全健康-课件
- 安全组织机构图
- 旧石器时代考古-基础知识课件
- 江苏省建设工程现场安全文明施工措施费计价管理办法
- 病区药品规范化管理与问题对策黄池桃
评论
0/150
提交评论