(新课改地区)2021版高考数学一轮复习 核心素养测评五 函数的奇偶性、对称性与周期性 新人教B版_第1页
(新课改地区)2021版高考数学一轮复习 核心素养测评五 函数的奇偶性、对称性与周期性 新人教B版_第2页
(新课改地区)2021版高考数学一轮复习 核心素养测评五 函数的奇偶性、对称性与周期性 新人教B版_第3页
(新课改地区)2021版高考数学一轮复习 核心素养测评五 函数的奇偶性、对称性与周期性 新人教B版_第4页
(新课改地区)2021版高考数学一轮复习 核心素养测评五 函数的奇偶性、对称性与周期性 新人教B版_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

核心素养测评五 函数的奇偶性、对称性与周期性(30分钟60分)一、选择题(每小题5分,共25分)1.下列函数中,与函数y=-3|x|的奇偶性相同,且在(-,0)上单调性也相同的是()a.y=-1xb.y=log2|x|c.y=1-x2d.y=x3-1【解析】选c.函数y=-3|x|为偶函数,在(-,0)上为增函数,选项b的函数是偶函数,但其单调性不符合,只有选项c符合要求.【变式备选】下列函数中,既是偶函数,又在(0,+)上单调递增的函数是()a.y=x13b.y=|x|+1c.y=-x2+1d.y=2-|x|【解析】选b.因为y=x13是奇函数,y=|x|+1,y=-x2+1,y=2-|x|均为偶函数,所以a错误;又因为y=-x2+1,y=2-|x|=12|x|在(0,+)上均为减函数,只有y=|x|+1在(0,+)上为增函数,所以c,d错误.2.已知函数f(x)=24x-a2x的图象关于原点对称,g(x)=ln (ex+1)-bx是偶函数,则logab=()a.1b.-1c.-12d.14【解析】选b.由题意得f(0)=0,所以a=2.因为g(1)=g(-1),所以ln (e+1)-b=ln 1e+1+b,所以b=12,所以log212=-1.3.x为实数,x表示不超过x的最大整数,则函数f(x)=x-x在r上为()a.奇函数b.偶函数c.增函数d.周期函数【解析】选d.函数f(x)=x-x在r上的图象如图:所以f(x)在r上是周期为1的函数.4.已知f(x)是定义在r上的奇函数,当x0时,f(x)=x2+2x,若f(2-a2)f(a),则实数a的取值范围是()a.(-,-1)(2,+)b.(-1,2)c.(-2,1)d.(-,-2)(1,+)【解析】选c.因为f(x)是奇函数,所以当xf(a),得2-a2a,解得-2a0时,f(x)=x2-x,则当x0时,f(x)=x2-x,则当x0的解集为_.【解析】根据题意,因为f(x)是定义在r上的偶函数,且在区间(-,0上为增函数,所以函数f(x)在0,+)上为减函数,由f(3)=0,则不等式f(1-2x)0f(1-2x)f(3)|1-2x|3,解得-1x0,0,x=0,x2+mx,x0是奇函数.(1)求实数m的值.(2)若函数f(x)在区间-1,a-2上单调递增,求实数a的取值范围.【解析】(1)设x0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x).于是x-1,a-21,所以1a3,故实数a的取值范围是(1,3.10.设函数f(x)是定义在r上的奇函数,对任意实数x都有f32+x=-f32-x成立.(1)证明y=f(x)是周期函数,并指出其周期.(2)若f(1)=2,求f(2)+f(3)的值.(3)若g(x)=x2+ax+3,且y=|f(x)|g(x)是偶函数,求实数a的值.【解析】(1)由f32+x=-f32-x,且f(-x)=-f(x),知f(3+x)=f32+32+x=-f32-32+x=-f(-x)=f(x),所以y=f(x)是周期函数,且t=3是其一个周期.(2)因为f(x)为定义在r上的奇函数,所以f(0)=0,且f(-1)=-f(1)=-2,又t=3是y=f(x)的一个周期,所以f(2)+f(3)=f(-1)+f(0)=-2+0=-2.(3)因为y=|f(x)|g(x)是偶函数,且|f(-x)|=|-f(x)|=|f(x)|,所以|f(x)|为偶函数.故g(x)=x2+ax+3为偶函数,即g(-x)=g(x)恒成立,于是(-x)2+a(-x)+3=x2+ax+3恒成立.于是2ax=0恒成立,所以a=0.(15分钟35分)1.(5分)(2020佛山模拟)若函数f(x)=x2+x,x0x2-ax,xf(2a)f(0)b.f(a)f(0)f(2a)c.f(2a)f(a)f(0)d.f(2a)f(0)f(a)【解析】选c.因为函数f(x)=x2+x,x0x2-ax,xf(a)f(0).【变式备选】设函数f(x)和g(x)分别是r上的偶函数和奇函数,则下列结论恒成立的是()a.f(x)+|g(x)|是偶函数b.f(x)-|g(x)|是奇函数c.|f(x)|+g(x)是偶函数d.|f(x)|-g(x)是奇函数【解析】选a.由g(x)是奇函数,可得g(-x)=-g(x),所以|g(x)|=|g(-x)|,即|g(x)|为偶函数,又f(x)为偶函数,所以f(x)+|g(x)|为偶函数.2.(5分)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()a.奇函数,且在(0,1)内是增函数b.奇函数,且在(0,1)内是减函数c.偶函数,且在(0,1)内是增函数d.偶函数,且在(0,1)内是减函数【解析】选a.易知f(x)的定义域为(-1,1),且f(-x)=ln(1-x)-ln(1+x)=-f(x),则y=f(x)为奇函数,又y=ln(1+x)与y=-ln(1-x)在(0,1)上是增函数,所以f(x)=ln(1+x)-ln(1-x)在(0,1)上是增函数.3.(5分)(2020海口模拟)设函数f(x)=x1+|x|,则使得f(x)f(2x-1)成立的x的取值范围是_.【解析】因为f(-x)=-f(x),所以f(x)是奇函数,且x0时,f(x)=x1+x=1-11+x,故f(x)单调递增,又f(0)=0,从而f(x)是r上的增函数,故f(x)f(2x-1)等价于x2x-1,解得x1.答案:(-,1)【变式备选】设定义在-2,2上的偶函数f(x)在区间0,2上单调递减,若f(1-m)f(m),则实数m的取值范围是_.【解析】因为f(x)是偶函数,所以f(-x)=f(x)=f(|x|).所以f(1-m)f(m)等价于f(|1-m|)|m|,-21-m2,-2m2.解得-1m12.答案:-1,124.(10分)已知函数f(x)=2|x-2|+ax(xr)有最小值.(1)求实数a的取值范围.(2)设g(x)为定义在r上的奇函数,且当x0时,g(x)=f(x),求g(x)的解析式.【解析】(1)f(x)=(a+2)x-4,x2,(a-2)x+4,x0,则-x0,0,x=0,(a-2)x+4,x0.5.(10分)设f(x)是(-,+)上的奇函数,f(x+2)=-f(x),当0x1时,f(x)=x.(1)求f()的值.(2)当-4x4时,求f(x)的图象与x轴所围成图形的面积.【解析】(1)由f(x+2)=-f(x)得,f(x+4)=f(x+2)+2=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,所以f()=f(-14+)=f(-4)=-f(4-)=-(4-)=-4.(2)由f(x)是奇函数且f(x+2)=-f(x),得f(x-1)+2=-f(x-1)=f-(x-1),即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.又当0x1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.当-4x4时,f(x)的图象与x轴围成的图形面积为s,则s=4soab=41221=4.1.(2020重庆模拟)已知f(x)是定义在r上的奇函数,且满足f(1-x)=f(1+x),当x0,1时,f(x)=log2(x+1),则f(2 019)=()a.1b.-1c.0d.log23【解析】选b.因为奇函数f(x)满足f(1-x)=f(1+x),所以f(x+1)=f(1-x)=-f(x-1),即f(x+2)=-f(x),则f(x+4)=-f(x+2)=f(x),即函数f(x)是周期为4的函数,因为当x0,1时,f(x)=log2(x+1),所以f(2 019)=f(5054-1)=f(-1)=-f(1)=-log22=-1.2.设函数f(x)是定义在r上的偶函数,且对任意的xr恒有f(x+1)=f(x-1),已知当x0,1时,f(x)=2x,则有2是函数f(x)的周期;函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是_.【解析】在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故正确;当x0,1时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论