课题∶数学中考专题复习.doc_第1页
课题∶数学中考专题复习.doc_第2页
课题∶数学中考专题复习.doc_第3页
课题∶数学中考专题复习.doc_第4页
课题∶数学中考专题复习.doc_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冲刺中考、挑战基础课题:数学中考专题复习 -动点问题 常州勤业中学 余俏艳教学目标:学生通过阅读、画图、观察抓住变化中的变量与其他量之间的内在联系,建立它们之间的关系;善于探索动点运动的特点和规律,作一些符合条件的草图,利用问题的解决。教学重点:抓住变化中的“不变”以“不变”应“万变”将图形 则“动”这“静”,再设法分别求解这种分类画图的方法在解动态几何题中非常有效,它可帮我们理清思路,各个击破。教学难点:是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活.教学过程及设计意图:从简单的动点问题入手,提高学生学习动点问题的信心。例一:如图,是的直径,点是半径的中点,点在线段上运动(不与点重合)。点在上半圆上运动,且总保持,过点作的切线交的延长线于点。 (1)当时,判断是 三角形;(2)当时,请你对的形状做出猜想,并给予证明; (3)由(1)、(2)得出的结论,进一步猜想,当点在线段上运动到任何位置时,一定是 三角形。例二在RtABC中,C90,BC6cm,ABC30.D是CB上一点,DC1cm.P、Q是直线CB上的两个动点,点P从C点出发,以1cm/s的速度沿直线CB向右运动,同时,点Q从D点出发,以2cm/s的速度沿直线CB向右运动,以PQ为一边在CB的上方作等边三角形PQR,下图是其运动过程中的某一位置设运动的时间是t(s).(1)PQR的边长是cm(用含有t的代数式表示);当t时,点R落在AB上.(2)若等边PQR与ABC重叠部分的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围(3)在P、Q移动的同时,以点A为圆心、tcm为半径的A也在不断变化,请直接写出A与PQR的三边所在的直线相切时t的值.小结:动点题是近年来中考的的一个热点问题,解这类题目要“以静制动”,即把动态问题,变为静态问题来解。一般方法是抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量X、Y的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。第三,确定自变量的取值范围,画出相应的图象。课堂检测:已知点A(0, 6), B(3,0), C(2,0), 动点M在Y轴上,M(0,m),其中m6,以M为圆心,MC为半径作圆,则(1)当m为何值时,M与直线AB相切(2)当m=0时,M与直线AB有怎样的位置关系?当m=3时,M与直线AB有怎样的位置关系?(3)由第(2)题验证的结果,你是否得到启发,从而说出在什么范围内取值时,M与直线AB相离?相交?(2),(3)只写结果,不要过程)(江苏常州中考题)数学专题复习 1下列空间图形中是圆柱的为( ) (A) (B) (C) (D)2、图1中几何体的主视图是( )3、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是()(第4题) A B C D4、一空间几何体的三视图如图所示,则这个几何体是( )A、圆柱 B、圆锥 C、球 D、长方体5、如果某物体的三视图是如图所示的三个图形,那么该物体的形状是 ()A、正方体 B、长方体 C、三棱柱 D、圆锥6、如图所示的正四棱锥的俯视图是()ABCD7、下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( ) A、球 B、圆柱 C、三棱柱 D、圆锥8、如图是由几个小立方块所搭几何体的俯视图 ,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是 ( ) 1 1 12 A BC D9、下图中表示的是组合在一起的模块,在四个图形中,是这个模块的俯视图的是() A、B、C、D、俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图.(第7题)10、“圆柱与球的组合体”如右图所示,则它的三视图是()A B C D11、如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是( )(第11题) A、 B、 C、 D、12、圆柱的侧面展开图是()、等腰三角形 、等腰梯形、扇形、矩形13、下列图形中,既是轴对称图形,又是中心对称图形的是 ()14、下面有4个汽车标致图案,其中是轴对称图形的是() A、 B、 C、 D、15、下列四个图形分别是正三角形、等腰梯形、正方形、圆,它们全部是轴对称图形,其中对称轴的条数最少的图形是 ( ) A、 B、 C、 D、16、图所列图形中是中心对称图形的为() A B C D17、下列基本图形中经过平移、旋转或轴对称变换后不能得到右图的是() A BC. ab12c18、下列图形中,不是中心对称图形的是( )A. 圆B. 菱形C. 矩形D. 等边三角形19、如图,直线ab,直线c是截线,如果1=50,那么2等于()A.150 B.140 C.130 D.12020、顺次连结任意四边形四边中点所得的四边形一定是( )A、平行四边形 B、矩形 C、菱形 D、正方形21、若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是( )A、梯形 B、矩形 C、菱形 D、正方形22、如果三角形的两边长为2和9,且周长为奇数,那么满足条件的三角形共有()A1个 B2个 C3个 D4个23、如果点O为ABC的外心,BOC=70,那么BAC等于()A35 B110 C145 D 35或14524、已知梯形的上底边长是6cm,它的中位线长是8cm,则它的下底边长是( )A、8cm B、10cm C、12cm D、14cm25、如图O中弧AB是度数为60,AC是O的直径,那么BOC等于( )A、150 B、130 C、120 D、6026、在ABC中,C90,若A2B,则cosB等于( )ABOCA、 B、 C、 D、27、如图,点A、B、C是O上的三点,BAC=40,则OBC的度数是()A、80B、40C、50D、2028、若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是()ABCA.8B.10C.5或4D.10或829、如图,有一住宅小区呈三角形ABC形状,且周长为2000m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积(精确到1)是()A.6000B.6016C.6028D.603630、如图,两个等圆O和O外切,过点O作O的两条切线OA、OB,A、B是切点,则AOB等于() A30 B45 C60 D7531、 如图,在半径为5的O中,如果弦AB的长为8,那么它的弦心距OC等于( )A、2 B、3 C、4 D、632、如图,在平行四边形ABCD中,E是AD上一点,连结CE并延长交BA的延长线于点F,则下列结论中错误的是( )A.AEFDEC B. FA:CDAE:BC C. FA:ABFE:EC D. ABDC33、如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A是25米,离路灯B是5米,如果小亮的身高为1.6米,那么路灯高度为( )A6.4米 B 8米 C9.6米 D 11.2米 34、在RtABC中,C90,AB5,AC3,则sinB的值是( )A、 B、 C、 D、35、已知两圆的半径分别为1和4,圆心距为3,则两圆的位置关系是( )A、外离 B、外切 C、相交 D、内切ABCO36、张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为( )A、3.2米 B、4.8米 C、5.2米 D、5.6米37、如图,A、C、B是O上三点,若AOC40,则ABCP第39题图ABC的度数是( )A、10B、20 C、40 D、8038、在下列命题中,真命题是A、两个钝角三角形一定相似B、两个等腰三角形一定相似C、两个直角三角形一定相似D、两个等边三角形一定相似39、如图,P为正三角形ABC外接圆上一点,则APB( )A.150 B.135 C.115 D.12040、O和O的半径分别为R和R,圆心距OO5,R3,当0R2时,O和O的位置关系是( )A.内含 B.外切 C.相交 D.外离41、已知圆锥的底面周长为58cm,母线长为30cm,求得圆锥的侧面积为( )A、870cm2 B、908 cm2 C、1125 cm2 D、1740 cm242、一副三角板不能拼出的角的度数是( ) A、75 B、105 C、120 D、125课时27三角形的有关概念DB7060BACD【课前热身】1 如图,在ABC中,A70,B60,点D在BC的延长线上,则ACD 度.C2 中,分别是的中点,当时, cm (第1题)3 如图在ABC中,AD是高线,AE是角平分线,AF中线.(1) ADC 90; (2) CAE ;(3) CF ; (4) SABC (第3题) (第4题)4 如图,ABC中,A = 40,B = 72,CE平分ACB,CDAB于D,DFCE,则CDF = 度.5 如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 和 【考点链接】一、三角形的分类:1三角形按角分为_,_,_2三角形按边分为_,_.二、三角形的性质:1三角形中任意两边之和_第三边,两边之差_第三边2三角形的内角和为_,外角与内角的关系:_三、三角形中的主要线段:1_叫三角形的中位线2中位线的性质:_3三角形的中线、高线、角平分线都是_(线段、射线、直线)【典例精析】例1 如图,在ABC中,D是BC边上一点,1=2,3=4,BAC=63求DAC的度数例2 如图,已知D 、E分别是ABC的边BC和边AC的中点,连接DE、AD,若S24cm,求DEC的面积.例3 如图,在等腰三角形中,为底边上一动点(不与点重合),垂足分别为,求的长【中考演练】1在ABC中,若ACB,则A ,B ,这个三角形是 .2已知三角形的三边长分别为3、8、x,若x的值为偶数,则x的值有( )A. 6个 B. 5个 C. 4 个 D. 3个3已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60 B.75 C.90 D.1204如图,ABCD,AE平分BAC,CE平分ACD,求E的度数 5. 如图,已知DEBC,CD是ACB的平分线,B70,ACB50,求EDC和BDC的度数6. ABC中,AD是高,AE、BF是角角平分线相交于点O,BAC=50,C=70,求DAC,BOA的度数.课时28等腰三角形与直角三角形【课前热身】1等腰三角形的一个角为50,那么它的一个底角为_2. 在ABC中,ABAC,A50,BD为ABC的平分线,则BDC_3在ABC中,ABAC,D为AC边上一点,且BDBCAD则A等于( )A30 B36 C45 D72 (第2题) (第3题) (第4题)4一艘轮船由海平面上A地出发向南偏西40的方向行驶40海里到达B地,再由B地向北偏西10的方向行驶40海里到达C地,则A、C两地相距()A30海里 B40海里 C50海里 D60海里【考点链接】一等腰三角形的性质与判定:1. 等腰三角形的两底角_;2. 等腰三角形底边上的_,底边上的_,顶角的_,三线合一;3. 有两个角相等的三角形是_二等边三角形的性质与判定:1. 等边三角形每个角都等于_,同样具有“三线合一”的性质;2. 三个角相等的三角形是_,三边相等的三角形是_,一个角等于60的_三角形是等边三角形三直角三角形的性质与判定:1. 直角三角形两锐角_2. 直角三角形中30所对的直角边等于斜边的_3. 直角三角形中,斜边的中线等于斜边的_;4. 勾股定理:_5. 勾股定理的逆定理:_【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长 例2中华人民共和国道路交通管理条例规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,测得该车从北偏西60的A点行驶到北偏西30的B点,所用时间为15秒(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速 【中考演练】1已知等腰三角形的一个底角为,则它的顶角为_度2已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为_AOB东北3 如图,小雅家(图中点处)门前有一条东西走向的公路,经测得有一水塔(图中点处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是_(第3题) 4如图,已知在直角三角形中,C=90,BD平分ABC且交AC于D 若BAC=30,求证:AD=BD; 若AP平分BAC且交BD于P,求BPA的度数5 如图,小明用一块有一个锐角为的直角三角板测量树高,已知小明离树的距离为4米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米)课时29全等三角形【课前热身】1如图1所示,若OADOBC,且O=65,C=20,则OAD=_BAEFCD (第1题) (第2题) (第3题)2如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带去 B.带去 C.带去 D.带和去 3如图,已知AEBF, E=F,要使ADEBCF,可添加的条件是_.4. 在ABC和A/B/C/中,AB=A/B/,A=A/,若证ABCA/B/C/还要从下列条件中补选一个,错误的选法是( ) A. B=B/ B. C=C/ C. BC=B/C/, D. AC=A/C/,【考点链接】1全等三角形:_、_的三角形叫全等三角形.2. 三角形全等的判定方法有:_、_、_、_.直角三角形全等的判定除以上的方法还有_.3. 全等三角形的性质:全等三角形_,_.4. 全等三角形的面积_、周长_、对应高、_、_相等.【典例精析】例1 已知:在梯形ABCD中,AB/CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:AB=CF.例2如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AEBC求证:(1)AEFBCD;(2)EFCD【中考演练】1.如图,则等于( )A B C D2. 如图,点在的平分线上,则需添加的一个条件是 (只写一个即可,不添加辅助线):OEABDC(第1题) (第2题) (第3题)3. 如图,D是AB边上的中点,将沿过D的直线折叠,使点A落在BC上F处,若,则 _度ABCDFE4.如图,矩形ABCD中,点E是BC上一点,AEAD,DFAE于F,连结DE,求证:DFDC5. 如图,AB=AD,BC=DC,AC与BD交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)EBCDACBODAE6.如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC求AEB的大小.课时30相似三角形【课前热身】1两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为_,周长之比为_,面积之比为_2若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为_3如图,在ABC中,已知ADE=B,则下列等式成立的是( )A B C D 4在ABC与ABC中,有下列条件: (1);(2);(3)A=A;(4)C=C如果从中任取两个条件组成一组,那么能判断ABCABC的共有多少组( ) A1 B2 C3 D4【考点链接】一、相似三角形的定义三边对应成_,三个角对应_的两个三角形叫做相似三角形二、相似三角形的判定方法1. 若DEBC(A型和X型)则_2. 射影定理:若CD为RtABC斜边上的高(双直角图形)则RtABCRtACDRtCBD且AC2=_,CD2=_,BC2=_ _ 3. 两个角对应相等的两个三角形_4. 两边对应成_且夹角相等的两个三角形相似5. 三边对应成比例的两个三角形_三、相似三角形的性质1. 相似三角形的对应边_,对应角_2. 相似三角形的对应边的比叫做_,一般用k表示3. 相似三角形的对应角平分线,对应边的_线,对应边上的_线的比等于_比,周长之比也等于_比,面积比等于_ 【典例精析】例1 在ABC和DEF中,已知A=D,AB=4,AC=3,DE=1,当DF等于多少时,这两个三角形相似 例2 如图,ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm3.5cm,放映的荧屏的规格为2m2m,若放映机的光源距胶片20cm时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.如图,若ABCDEF,则D的度数为_2.在中, 为直角, 于点, 写出其中的一对相似三角形是 _ 和 _ ; 并写出它的面积比_. (第1题) (第2题) (第3题)3. 如图,在ABC中,若DEBC,DE4cm,则BC的长为 ( )A.8cm B.12cm C.11cm D.10cm4. 如图,已知是矩形的边上一点,于,试证明课时31锐角三角函数【课前热身】1在ABC中,C90,BC2,sinA,则AC的长是( ) A B3 C D2RtABC中,C=,AB=12,则sinA的值( )B(0,4)A(3,0)0xyA B C D13如图,在平面直角坐标系中,已知点A(3,0),点B(0,4),则 等于_4=_【考点链接】abc1sin,cos,tan定义sin_,cos_,tan_ 2特殊角三角函数值304560sincostan【典例精析】例1 在RtABC中,a5,c13,求sinA,cosA,tanA 例2 计算:例3 等腰ABC中,ABAC5,BC8,求底角B的四个三角函数值 【中考演练】1 在ABC中,C 90,tanA ,则sinB ( )A B C D2若,则下列结论正确的为( )A 0 A 30 B30 A 45C 45 A 60 D60 A 0时函数图像的两个分支分别在第一,三象限内在每一象限内,y随x的增大而减小 (2)当k0 点A在反比例函数y=的图像上,得3a=,解得a1=2,a2=2,经检验a1=2,a2=2是原方程的根,但a2=2不符合题意,舍去 点A的坐标为(2,6) (2)由题意,设点B的坐标为(0,m) m0,m= 解得m=,经检验m=是原方程的根, 点B的坐标为(0,) 设一次函数的解析式为y=kx+ 由于这个一次函数图像过点A(2,6), 6=2k+,得k= 所求一次函数的解析式为y=x+ 例2 如图,已知RtABC的顶点A是一次函数y=x+m与反比例函数y=的图像在第一象限内的交点,且SAOB=3 (1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,请写出它们的解析式;如不能确定,请说明理由 (2)如果线段AC的延长线与反比例函数的图像的另一支交于D点,过D作DEx轴于E,那么ODE的面积与AOB的面积的大小关系能否确定?(3)请判断AOD为何特殊三角形,并证明你的结论 【分析】AOB是直角三角形,所以它的面积是两条直角边之积的,而反比例函数图像上任一点的横坐标,纵坐标之积就是反比例函数中的系数由题意不难确定m,则所求一次函数,反比例函数的解析式就确定了 由反比例函数的定义可知,过反比例函数图像上任一点作x轴,y轴的垂线,该点与两垂足及原点构成的矩形的面积都是大小相等的 【解答】(1)设B(x,0),则A(x0,),其中00,m0 在RtABO中,AB=,OB=x0 则SABO =x0=3,即m=6 所以一次函数的解析式为y=x+6;反比例函数的解析式为y= (2)由得x2+6x6=0, 解得x1=3+,x2=3 A(3+,3+),D(3,3) 由反比例函数的定义可知,对反比例函数图像上任意一点P(x,y),有 y=即xy=6 SDEO =xDyD=3,即SDEO =SABO (3)由A(3+,3+)和D(3,3)可得AO=4,DO=4,即AO=DO 由图可知AOD90,AOD为钝角等腰三角形 【点评】特殊三角形主要指边的关系和角的关系通过对直观图形的观察,借助代数运算验证,便不难判断强化训练一、填空题1如图1,直线y=kx(k0)与双曲线y=交于A(x1,y1),B(x2,y2)两点,则2x1y27x2y1的值等于_ 图1 图2 图32如图2,矩形AOCB的两边OC,OA分别位于x轴,y轴上,点B的坐标为B(,5),D是AB边上的一点,将ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是_3近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为_4若y=中,y与x为反比例函数,则a=_若图像经过第二象限内的某点,则a=_5反比例函数y=的图像上有一点P(a,b),且a,b是方程t24t2=0的两个根,则k=_;点P到原点的距离OP=_6已知双曲线xy=1与直线y=x+无交点,则b的取值范围是_7反比例函数y=的图像经过点P(a,b),其中a,b是一元二次方程x2+kx+4=0的两个根,那么点P的坐标是_8(2008,咸宁)两个反比例函数y=和y=在第一象限内的图像如图3所示,点P在y=的图像上,PCx轴于点C,交y=的图像于点A,PDy轴于点D,交y=的图像于点B,当点P在y=的图像上运动时,以下结论: ODB与OCA的面积相等; 四边形PAOB的面积不会发生变化; PA与PB始终相等 当点A是PC的中点时,点B一定是PD的中点 其中一定正确的是_(把你认为正确结论的序号都填上,少填或错填不给分)二、选择题9(2008,济南)如图4所示,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB,AC分别平行于x轴,y轴,若双曲线y=(k0)与ABC有交点,则k的取值范围是( ) A1k2 B1k3 C1k4 D1k0)的第一象限内的图像如图5所示,P为该图像上任意一点,PQ垂直于x轴,垂足为Q,设POQ的面积为S,则S的值与k之间的关系是( ) AS= BS= CS=k DSk11如图6,已知点A是一次函数y=x的图像与反比例函数y=的图像在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么AOB的面积为( ) A2 B C D212函数y=与y=mxm(m0)在同一平面直角坐标系中的图像可能是( )13如果不等式mx+n4,点(1,n)在双曲线y=上,那么函数y=(n1)x+2m的图像不经过( ) A第一象限 B第二象限 C第三象限 D第四象限14(2006,攀枝花)正比例函数y=2kx与反比例函数y=在同一坐标系中的图像不可能是( )15已知P为函数y=的图像上一点,且P到原点的距离为,则符合条件的P点数为( ) A0个 B2个 C4个 D无数个16如图,A,B是函数y=的图像上关于原点O对称的任意两点,AC平行于y轴,交x轴于点C,BD平行于y轴,交x轴于点D,设四边形ADBC的面积为S,则( )AS=1 B1S2三、解答题17已知:如图,反比例函数y=与一次函数y=x+2的图像交于A,B两点,求:(1)A,B两点的坐标; (2)AOB的面积18(2006,广州白云区)如图,已知一次函数y=kx+b的图像与反比例函数y=的图像交于A,B两点,且点A的横坐标和点B的纵坐标都是2,求:(1)一次函数的解析式; (2)AOB的面积19已知函数y=的图像上有一点P(m,n),且m,n是关于x方程x24ax+4a26a8=0的两个实数根,其中a是使方程有实根的最小整数,求函数y=的解析式20(2006,北京市)在平面直角坐标系Oxy中,直线y=x绕点O顺时针旋转90得到直线L直线L与反比例函数y=的图像的一个交点为A(a,3),试确定反比例函数的解析式21(2008,南通)如图所示,已知双曲线y=与直线y=x相交于A,B两点第一象限上的点M(m,n)(在A点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论