16 相似三角形的判定方法2 特殊四边形与动点2.doc_第1页
16 相似三角形的判定方法2 特殊四边形与动点2.doc_第2页
16 相似三角形的判定方法2 特殊四边形与动点2.doc_第3页
16 相似三角形的判定方法2 特殊四边形与动点2.doc_第4页
16 相似三角形的判定方法2 特殊四边形与动点2.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

龙文教育-您值得信赖的专业化个性化辅导学校 龙文教育个性化辅导授课案ggggggggggggangganggang纲 教师: 学生: 时间: 2012年8月 日 :00 :00段 4.3两个相似三角形的判定(2)教学目标:1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程.2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法.3、能运用上述两个判定方法判定两个三角形相似.重点与难点:1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用.2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点.知识要点:三角形相似的条件:1、有两个角对应相等的两个三角形相似.2、两边对应成比例,且夹角相等的两个三角形相似.3、三边对应成比例的两个三角形线相似.重要方法:1、利用两对对应角相等证相似,关键是找出两对对应角.2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大对大,小对小,中对中.3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角.4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14ABC中,ABAC,A120,在ABC中,ABAC,A30,可以说ABABACAC,BA,但两个三角形不相似. 教学过程:一、复习1、我们已经学习了几种判定三角形相似的方法?(1)平行于三角形一边直线定理DEBC,ADEABC(2)判定定理1: A=A,B=B,ABCABC(3)直角三角形中的一个重要结论ACB=Rt,CDAB,ABCACDCDB二、新课1、合作学习:P109-110下面我们来探究还可用哪些条件来判定两个三角形相似?我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS” 、“SSS”判定方法,三角形相似还有两个判定方法,即判定定理2和判定定理3。2、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。可以简单说成“两边对应成比例且夹角相等,两三角形相似”已知:如图,ABC和ABC中, A=A,ABAB=ACAC求证:ABCABC定理的几何格式:A =AABCABC3、例题讲解例1.如图已知点D,E分别在AB,AC上,求证:DEBC.4、判定定理3:如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。可简单说成:三边对应成比例,两三角形相似。几何格式ABCABC5、例2.如图判断44方格中的两个三角形是否相似,并说明理由.例3. 依据下列各组条件,判定ABC与ABC是不是相似,并说明为什么:A=120,AB=7厘米,AC=14厘米, A=120,AB=3厘米,AC=6厘米;AB=4厘米,BC=6厘米,AC=8厘米, AB=12厘米,BC=18厘米,AC=24厘米特殊四边形与动点2 已知直线y=2x+1m与抛物线y=x24x+k的一个交点坐标为(1,1)(1)分别求出直线与抛物线的函数解析式;(2)如果在点(1,0)、(4,0)之间有一个动点F(a,0),过点F作y轴的平行线,交直线于点C,交抛物线于点D,求CD的长(用含a的代数式表示);(3)设抛物线的对称轴与直线交于点B,与x轴交于点A,四边形ABCD能否构成平行四边形?如果能,请求出这个平行四边形的面积;如果不能,请简要说明理由12(2012孝感)如图,抛物线y=ax2+bx+c(a,b,c是常数,a0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(1,0),B(3,0),C(0,3)(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PMx轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若P为抛物线在第一象限上的一个动点,过点P作PQAC交x轴于点Q当点P的坐标为_时,四边形PQAC是平行四边形;当点P的坐标为_时,四边形PQAC是等腰梯形(直接写出结果,不写求解过程)13如图,抛物线y=x2+bx+c与x轴交于A(1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2(1)求抛物线的解析式及直线AC的解析式;(2)P是线段AC上的一个动点,过P点作x轴的垂线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由14已知:如图,在梯形ABCD中,ADBC,DCB=90,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O(1)当P点在BC边上运动时,求证:BOPDOE;(2)设(1)中的相似比为k,若AD:BC=2:3,请探究:当四边形ABPE是平行四边形时,k=_;当四边形ABPE是直角梯形时,k=_;当四边形ABPE是等腰梯形时,k=_;给出的求解过程15如图,正方形ABCD的边长为1,G是CD边上的一个动点(G不与C、D重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE、BG,并延长BG交DE于点H(l)求证:BCGDCE;BHDE(2)当点G运动到何处时,四边形DGEF是平行四边形,并加以证明(3)当点G运动到何处时,BH垂直平分DE?请说明理由16(2009江西)如图,抛物线y=x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PFDE交抛物线于点F,设点P的横坐标为m;用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?设BCF的面积为S,求S与m的函数关系式17(2011遵义)如图,梯形ABCD中,ADBC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EFBC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0t10)(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由18如图,抛物线y=mx2+3mx3(m0)与y轴交于点C,与x轴交于A、B两点,点A在点B的左侧,且(1)求此抛物线的解析式;(2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由19已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(3,0),与y轴交于点C,点D(2,3)在抛物线上(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由20如图,在直角梯形ABCD中,ADBC,B=90,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=_cm;(2)当t为多少时,四边形PQCD成为平行四边形?21已知平行四边形ABCD四个顶点到动直线l的距离分别为a、b、c、d,(1)如图,当直线l在平行四边形ABCD外时,证明:a+c=b+d;(2)当直线l移动至与平行四边形ABCD相交(l与边不平行)时,上述关系还成立吗?若成立,试给予证明,若不成立,试找出a、b、c、d之间的关系,并给予证明22(2011广东)如图,抛物线y=x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BCx轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PNx轴,交直线AB于点M,交抛物线于点N设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论