2018届高考(新课标)数学(文)大一轮复习(课件+检测)(基础梳理+热点题型+演练提升)-第一章   集合与常用逻辑用语 (3)_第1页
2018届高考(新课标)数学(文)大一轮复习(课件+检测)(基础梳理+热点题型+演练提升)-第一章   集合与常用逻辑用语 (3)_第2页
2018届高考(新课标)数学(文)大一轮复习(课件+检测)(基础梳理+热点题型+演练提升)-第一章   集合与常用逻辑用语 (3)_第3页
2018届高考(新课标)数学(文)大一轮复习(课件+检测)(基础梳理+热点题型+演练提升)-第一章   集合与常用逻辑用语 (3)_第4页
2018届高考(新课标)数学(文)大一轮复习(课件+检测)(基础梳理+热点题型+演练提升)-第一章   集合与常用逻辑用语 (3)_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3简单的逻辑联结词、全称量词与存在量词考纲要求1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定,真,假,假,真,真,2.全称量词和存在量词,3.全称命题和特称命题,(4)全称命题一定含有全称量词,特称命题一定含有存在量词()(5)写特称命题的否定时,存在量词变为全称量词()(6)x0M,p(x0)与xM,綈p(x)的真假性相反()【答案】 (1)(2)(3)(4)(5)(6),【解析】 由题意知命题p为假命题,命题q为真命题,所以pq为真命题故选A.【答案】 A,【答案】 D,3(2015浙江)命题“nN*,f(n)N*且f(n)n”的否定形式是()AnN*,f(n)N*且f(n)nBnN*,f(n)N*或f(n)nCn0N*,f(n0)N*且f(n0)n0Dn0N*,f(n0)N*或f(n0)n0,【解析】 写全称命题的否定时,要把量词改为,并且否定结论,注意把“且”改为“或”故选D.【答案】 D,4(2015湖北)命题“x0(0,),ln x0x01”的否定是()Ax0(0,),ln x0x01Bx0(0,),ln x0x01Cx(0,),ln xx1Dx(0,),ln xx1【解析】 因为原命题是特称命题,所以原命题的否定是全称命题,所以命题“x0(0,),ln x0x01”的否定应为“x(0,),ln xx1”,故选C.【答案】 C,【答案】 ,题型一含有逻辑联结词的命题的真假判断【例1】 (1)(2017广州二测)已知命题p:xR,x20,命题q:,R,使tan()tan tan ,则下列命题为真命题的是(),(2)已知命题p:若xy,则xy;命题q:若xy,则x2y2.在命题pq;pq;p(綈q);(綈p)q中,真命题是()A BC D,【答案】 (1)C(2)C,【答案】 B,【答案】 (1)B(2)D,【答案】 (1)C(2)D,【方法规律】 (1)判定全称命题“xM,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断特称命题是真命题,只要在限定集合内至少找到一个xx0,使p(x)成立(2)对全(特)称命题进行否定的方法找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词对原命题的结论进行否定,【答案】 (1)D(2)C,题型三由命题的真假求参数的取值范围【例4】 已知命题p:关于x的不等式ax1(a0,a1)的解集是x|x0,命题q:函数ylg(ax2xa)的定义域为R,如果pq为真命题,pq为假命题,求实数a的取值范围【解析】 由关于x的不等式ax1(a0,a1)的解集是x|x0,知0a1;由函数ylg(ax2xa)的定义域为R,知不等式ax2xa0的解集为R,,【方法规律】 根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)然后再求出每个命题是真命题时参数的取值范围;(3)最后根据每个命题的真假情况,求出参数的取值范围,跟踪训练3 (1)已知命题p:“x1,2,x2a0”,命题q:“xR,使x22ax2a0”,若命题“p且q”是真命题,则实数a的取值范围是()Aa|a2或a1Ba|a1Ca|a2或1a2Da|2a1,(2)(2017福建厦门双十中学期中)已知p:存在xR,mx210,q:任意xR,x2mx10.若p且q为真命题,则实数m的取值范围是()Am2 B2m2C0m2 D2m0,【解析】 (1)“p且q”为真命题,p、q均为真命题,p:a1,q:a2或a1,a2或a1.(2)关于p:存在xR,mx210,m0;关于q:任意xR,x2mx10,则m240,解得2m2.因为p且q为真命题,所以p,q均为真命题,则实数m的取值范围是2m0.故选D.【答案】 (1)A(2)D,【答案】 C,【温馨提醒】 判断与一元二次不等式有关命题的真假,首先要分清是要求解一元二次不等式,还是要求一元二次不等式恒成立(有解、无解),然后再利用逻辑用语进行判断,二、求参数的取值范围,【答案】 A,【温馨提醒】 含逻辑联结词的命题的真假要转化为简单命题的真假,解题时要首先考虑简单命题为真时参数的范围,三、利用逻辑推理解决实际问题【典例3】 (1)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市由此可判断乙去过的城市为_(2)对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测:,甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:中国非第三名,而是第一名竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第_名,【解析】 (1)由题意可推断:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”,说明乙去过城市A,由此可知,乙去过的城市为A.(2)由上可知:甲、乙、丙均为“p且q”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知丙是真命题,因此中国足球队得了第一名【答案】 (1)A(2)一,【温馨提醒】 在一些逻辑问题中,当字面上并未出现“或”“且”“非”字样时,应从语句的陈述中搞清含义,并根据题目进行逻辑分析,找出各个命题之间的内在联系,从而解决问题.,方法与技巧1把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”时,要结合语句的含义理解2要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”,失误与防范1pq为真命题,只需p、q有一个为真即可;pq为真命题,必须p、q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论