全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2 消元解二元一次方程组第1课时 用代入消元法解方程组教学目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想“消元”.教学过程:一、 知识引入:用一个未知数表示另一个未知数:1.方程5x-3y=7,变形可得x=,y=.2.解方程组应消去y,把代入.3.方程y=2x-3和方程3x+2y=1的公共解是把xy20写成y20-x,叫做用含x的式子表示y的形式.写成x20-y,叫做用含y的式子表示x的形式.试一试:1.用含x的代数式表示y:x+y=22 (y=22-x)2.用含y的代数式表示x:2x-7y=8 (x=)二、情境导入: 提出问题,探究方法问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得一分,某队想在全部22场比赛中得到40分,这个队胜负场数分别是多少?方法一:可列一元一次方程来解解:设这个队胜了x场,则负了(22-x)场,由题意得 2x+(22-x)=40.(以下略)方法二:可列二元一次方程组来解解:设这个队胜了x场,负了y场,由题意得(以下略)这里所用的是将未知数的个数由多化少,逐一解决的想法消元思想.具体是由x+y=22得y=22-x,再把y=22-x代人2x+y=40得2x+(22-x)=40,这样就消掉了一个未知数y,把原来的二元一次方程组就化为了我们熟悉的一元一次方程.1.由二元一次方程组中一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫代入消元法,简称代入法.2.代入消元法的关键是用含一个未知数的代数式表示另一未知数.三、知识归纳:代入消元法解二元一次方程组的步骤(1)方程变形:将其中一个方程的某个未知数用含有另一个未知数的代数式表示出来.(2)代入消元:将变形后的方程代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(3)方程求解:解出一元一次方程的解,再将其代入到原方程,或变形后的方程中求出另一个未知数的解,最后得出方程组的解.(4)口算检验.四、强化巩固: 例题解析例1 用代入法解方程组:解:由得x=13-4y,把代入,得2(13-4y)+3y=16,解这个方程,得y2.把y2代入,得x=5.原方程组的解是例2 根据市场调查,某种消毒液的大瓶装(500 g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为25.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?两种产品的销售数量比为25,即销售的大瓶数目与小瓶数目的比为25.这里的数目以瓶为单位.分析:问题中包含两个条件:大瓶数:小瓶数25,大瓶所装消毒液小瓶所装消毒液=总生产量.解:设这些消毒液应分装x大瓶和y小瓶.根据大、小瓶数的比以及消毒液分装量与总生产量的相等关系,得由,得y=52x.把代入,得500x+25052x=22 500 000.解这个方程,得x=20 000.把x=20 000代入,得y=50 000,这个方程组的解是答:这个工厂一天应生产20 000大瓶和50 000小瓶消毒液.上面解方程组的过程可以用下面的框图表示:这个框图以用代入法解一个具体的二元一次方程组的过程为例,展示了代入法的解题步骤,以及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度车辆绿色出行补贴购买合同
- 二零二五年度经典实习合同(法律事务实习)
- 2025年度证券公司内部控制体系建设及风险管理体系优化委托合同
- 二零二五年度金融机构与个人客户协议存款业务合同
- 二零二五年度版水库鱼塘承包与渔业养殖技术培训合同
- 2025年度项目管理顾问聘用合同书
- 二零二五年度演出活动艺人合同解除及免责合同
- 2025年度私人车位租赁与车位租赁期限调整合同
- 2025年度解聘劳动合同补偿标准与员工终身学习支持合同
- 2025年度文化创意园区车位使用权共享与开发合同
- 机电安装工程安全培训
- 洗浴部前台收银员岗位职责
- 2024年辅警考试公基常识300题(附解析)
- GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程
- 暴发性心肌炎查房
- 工程质保金返还审批单
- 【可行性报告】2023年电动自行车项目可行性研究分析报告
- 五月天歌词全集
- 商品退换货申请表模板
- 实习单位鉴定表(模板)
- 数字媒体应用技术专业调研方案
评论
0/150
提交评论