浅谈天文学之射电天文学 _0_第1页
浅谈天文学之射电天文学 _0_第2页
浅谈天文学之射电天文学 _0_第3页
浅谈天文学之射电天文学 _0_第4页
浅谈天文学之射电天文学 _0_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档2016全新精品资料全新公文范文全程指导写作独家原创1/9浅谈天文学之射电天文学公文浅谈天文学之射电天文学摘要天文学是自然科学六大基础学科之一,它推动了人类社会的进步和科技的发展。天文学对于提高民族素质、培养创新精神及科学的思维方法,建立正确的世界观、宇宙观方面有着不可替代的作用。普及天文知识,对破除迷信、反对伪科学也具有重要的科学意义。发达国家及一些发展中国家的大学、中学都普遍开设了天文学课程。现在,我们学校也同样开设了天文学选修课,这为我们这些从小就对天文产生好奇、现在对天文依然抱有兴趣的人开了一扇圆梦的窗口。关键字天文星系射电望远镜引言自小就对天文方面颇感兴趣,但一直都没机会深入了解这方面的内容,课本上对天文方面的知识都是浅谈辄止,而我们也就只有通过看看课外书籍或者新闻来了解那神秘的未知世界。2005年“神舟六号”载人航天飞船的成功升天与着陆,让我们看到了以前遥不可及的星际并不是梦想。嫦娥奔月一直只是作为一个神话故事,而浩瀚的宇宙亦是那么的遥不可及,而今飞天梦想的实现,宇宙以不再是秘密精品文档2016全新精品资料全新公文范文全程指导写作独家原创2/9一天文学的性质当您抬头仰望天空时,您知道那些闪闪发光的东西是什么吗一些是行星,但多数为恒星,还有一些是巨大的星系,每个星系中都有成百上千亿颗恒星。天文学就是研究宇宙中的行星、恒星以及星系的科学。天文学家的任务就是解释我们在夜空中所看到的各种天体,他们还致力于了解其他一些东西,例如,恒星的年龄以及他们与地球之间的距离等等。内容包括天体的构造、性质和运行规律等。主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。同时天文学是简洁,优美的,令人陶醉的不少人认为天文学离现实生活很远,其实这也对,但说的不够严谨天文学不仅是一门自然科学,而且还是一门自然哲学,吸引无数人研究总的来说,天文学是一门古老而又年轻的科学天文学的发展历程象征着人类文明的成果与辉煌精品文档2016全新精品资料全新公文范文全程指导写作独家原创3/9二射电天文学的概述射电天文学是通过观测天体的无线电波来研究天文现象的一门学科。由于地球大气的阻拦,从天体来的无线电波只有波长约1毫米到30米左右的才能到达地面,绝大部分的射电天文研究都是在这个波段内进行的。射电天文学以无线电接收技术为观测手段,观测的对象遍及所有天体从近处的太阳系天体到银河系中的各种对象,直到极其遥远的银河系以外的目标。射电天文波段的无线电技术,到二十世纪四十年代才真正开始发展。对于历史悠久的天文学而言,射电天文使用的是一种崭新的手段,为天文学开拓了新的园地。三射电天文学的起源1860年,苏格兰物理学家麦克斯韦提出一个理论,预言整个辐射家族都与电磁现象有联系,而一般可见光只是这个家族中的一小部分而已。25年以后,即在麦克斯韦因患癌症过早去世7年后,才找到了证实他的预言的第一个确实的证据。1887年,德国物理学家HR赫兹从感应线圈的火花中制造振荡电流,结果产生出波长极长的辐射,比一般红外辐射的波长长得多。HR赫兹探测到了这些辐射。精品文档2016全新精品资料全新公文范文全程指导写作独家原创4/9这些辐射后来称做无线电波或射电波。波长可以用微米来量度;可见光的波长从039微米到078微米。接下去是近红外辐射,再就是中红外辐射,然后是远红外辐射。从此开始便是射电波所谓的微波从1000160000微米,长波射电波长高达几十亿微米。辐射的特性不仅可以用波长来表示,也可以用频率来表示。频率就是每秒钟产生的辐射的波数。可见光和红外辐射频率的数值太大,因此在这两种情况下通常不使用频率来表示。但是,对射电波来说,频率降低到比较低的数字,因而得到广泛地应用、每秒钟1000个波叫做1千周;每秒钟1000000个波叫做1兆周。微波的范围从300000兆周到1000兆周。一般电台使用的射电波波长都很长,都低到千周的范围。在赫兹发现射电波后的10年期间,光谱的另一端也有了同样的扩展。1895年,德国物理学家伦琴意外地发现了一种神秘的辐射,他称之为X射线,结果证明,X射线的波长比紫外辐射的波长短。后来卢瑟福证明,与放射性有关的射线的波长比X射线的还要短。于是,牛顿最初的光谱得到极大的扩展。如果我们把波长每增加一倍看作是相当于1个8度音程的话,那么我们所研究的全部电磁波谱大约等于60个8度音程可见光在靠近光谱的中心部分,仅占1个8度音程的范围。有了比较宽的光谱,我们对恒星的认识当然会更加全面。例如,我们知道,太阳光中包含着大精品文档2016全新精品资料全新公文范文全程指导写作独家原创5/9量紫外辐射和红外辐射,这些辐射大部分被我们的大气吸收了;但是1931年非常意外地发现了一个探索宇宙的射电窗口。贝尔电话实验室的一位年轻的无线电工程师央斯基,在研究经常伴随着无线电接收而产生的静电时,偶然发现了一种非常稳定的噪声,这种噪声不可能来自任何通常的噪声源。他最后断定,这种静电是由来自外层空间的射电波引起的。最初,来自空间的射电信号似乎在太阳方向上最强,但一天天过去后,接收到的最强信号慢慢地从太阳方向移开,并且在天空中环行一圈。到1933年,央斯基断定,这些射电波来自银河,特别是来自靠近银河系中心的人马座方向。到1933年,央斯基断定,这些射电波来自银河,特别是来自靠近银河系中心的人马座方向。于是射电天文学诞生了。四射电望远镜射电望远镜是指观测和研究来自天体的射电波的基本设备,可以测量天体射电的强度、频谱及偏振等量。包括收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录、处理和显示系统等。基本原理经典射电望远镜的基本原理和光学反射望远镜相似,投射来的电磁波被一精确镜面反射后,同相到达公共焦点。用旋转抛物面精品文档2016全新精品资料全新公文范文全程指导写作独家原创6/9作镜面易于实现同相聚焦,因此,射电望远镜天线大多是抛物面。射电望远镜表面和一理想抛物面的均方误差如不大于/16/10,该望远镜一般就能在波长大于的射电波段上有效地工作。对米波或长分米波观测,可以用金属网作镜面;而对厘米波和毫米波观测,则需用光滑精确的金属板作镜面。从天体投射来并汇集到望远镜焦点的射电波,必须达到一定的功率电平,才能为接收机所检测。目前的检测技术水平要求最弱的电平一般应达1020瓦。射频信号功率首先在焦点处放大101,000倍,并变换成较低频率,然后用电缆将其传送至控制室,在那里再进一步放大、检波,最后以适于特定研究的方式进行记录、处理和显示。天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度。当代先进射电望远镜有以德意志联邦共和国100米望远镜为代表的大中型厘米波可跟踪抛物面射电望远镜以美国国立射电天文台瑞典翁萨拉天文台和日本东京精品文档2016全新精品资料全新公文范文全程指导写作独家原创7/9天文台的设备为代表的毫米波射电望远镜以即将完成的美国甚大天线阵。贵州平塘的射电望远镜FAST是现在世界上最大口径的射电望远镜。在贵州平塘县一个叫大窝凼的山沟里,正在建设世界上最大单口径射电望远镜。这个望远镜叫FAST,已于2011年3月在我国正式开工建设,相当于30个足球场大。大窝凼的三座山峰形成一个天然“灶台”,可以将FAST这口“大锅”稳稳架在“灶台”上面。如果射电望远镜足够大,那么就连外星人的电视信号都探测得到假如外星人真的存在而且爱看电视的话。4年前,在美国佛州奥兰多市举行的“光学工程国际协会”研讨会上,一位天文学家说“从理论上说,如果外星人的确有电视节目的话,只要将足够大的射电望远镜对准外星人的星球,就能够接收得到。”据了解,与被评为“人类20世纪十大工程”之首的美国300米望远镜相比,该望远镜综合性能提高了约10倍。FAST建成之后,将保持世界领先地位二三十年。精品文档2016全新精品资料全新公文范文全程指导写作独家原创8/9不过大窝凼的村民都叫不惯FAST这个有些拗口的名字,而是给它取了一个颇为形象的名字天眼。五射电天文学的研究方法对于研究射电天体来说,测到它的无线电波只是一个最基本的要求。人们还可以应用颇为简单的原理,制造出射电频谱仪和射电偏振计,用以测量天体的射电频谱和偏振。研究射电天体的进一步的要求是精测它的位置和描绘它的图像。一般说来,只有把射电天体的位置测准到几角秒,才能够较好地在光学照片上认出它所对应的天体,从而深入了解它的性质。为此,就必须把射电望远镜造得很大,比如说,大到好几公里。这必然会带来机械制造上很大的困难。因此,人们曾认为射电天文在测位和成像上难以与光学天文相比。可是,五十年代以后,射电望远镜的发展,特别是射电干涉仪的发展,使测量射电天体位置的精度稳步提高。五十年代到六十年代前期,在英国剑桥,利用许多具射电干涉仪构成了“综合孔径”,系统,并且用这种系统首次有效地描绘了天体的精细射电图像。接着,荷兰、美国、澳大利亚等国也相继发展了这种设备。到七十年代后期,工作在短厘米波段的综合孔径系统所取得的天体射电图像细节精度已达2,可与地面上的光学望远镜精品文档2016全新精品资料全新公文范文全程指导写作独家原创9/9拍摄的照片媲美。射电干涉仪的应用还导致了六十年代末甚长基线干涉仪的发明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论