高三物理一轮复习:动量.doc_第1页
高三物理一轮复习:动量.doc_第2页
高三物理一轮复习:动量.doc_第3页
高三物理一轮复习:动量.doc_第4页
高三物理一轮复习:动量.doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

动量物理量规律典型应用冲量I=Ft动量P=m牛顿第二定律动量定理Ft=P牛顿第三定律动量守恒定律条件:增量式:问题碰撞、反冲、t问题变力的冲量知识网络:命题分析:“动量及动量守恒定律”是高中物理的重要内容,也是高考出题的热点高考中,重点考查动动量守恒定律的适用条件和动量守恒定律的应用,在高考中,动量常与牛顿运动定律、功和能、电场、磁场、原子核等知识综合命题.复习策略:本章内容包括动量和冲量两个基本概念以及动量定理和动量守恒定律两条基本规律.动量守恒定律比牛顿运动定律的适用范围更广泛,是自然界普遍适用的基本规律之一.本章应重点掌握动量和冲量的物理意义,掌握动量定理的内容。要重点掌握动量守恒的条件,要注意动量的方向性和相对性.在解题时凡需要求速度,符合动量守恒的条件,应考虑对相互作用的系统应用动量守恒定律, 凡涉及碰撞、反冲、爆炸的题目应考虑应用动量守恒定律。第一专题 冲量、动量 动量定理知识要点:1.冲量I=Ft:1)矢标性:方向由力的方向决定。2)作用效果:改变物体动量。2.动量p=m:1)矢标性:方向与物体运动的方向相同。2)为对地速度. 3.动量定理:1)表达式: Ft=mt-m0或 Ft=p.2)解题步骤:1根据题意,明确研究对象和研究过程(一般是单个物体)2对研究对象进行受力分析,并计算各力冲量的矢量和.3明确研究对象在研究过程始末的动量. 4规定正方向由动量定理列方程求解.三点一法:1.比较动量是否相同,不仅要比较大小,还要看方向是。例1:对一个质量不变的物体,下列说法正确的是(ACD )A.物体的动能发生变化,其动量必定变化 B.物体的动量发生变化,其动能必定变化C.物体所受的合外力不为零,物体的动量肯定要发生变化,但物体的动能不一定变化D.物体所受的合外力为零时,物体的动量一定不发生变化关键:1)物体所受合力不为零,加速度一定不为零(F=m). 2)速度的改变有三种可能情形:1只是速度大小发生变化,方向不变; 2只是速度方向变化而大小不变; 3速度的大小和方向都变。 3)P与EK的关系: EK=P2/2m2.牛顿第二定律的冲量表达式:F=p/t。甲乙P0pt1t2t例2:甲、乙两物体分别在恒力F1、F2的作用下沿同一直线运动,它们的动量随时间变化的关系如图所示.设甲在t1时间内受到的冲量大小为I1,乙在t2时间内受 到的冲量大小I2, 则由图可知( A ) A.F1F2, I1=I2B.F1I2D.F1=F2, I1I2例3:一单摆摆球质量m=0.2kg,摆长L=0.5m.今将摆球拉离与竖直方向成5角处由静止释放, 求摆球运动至平衡位置过程中重力的冲量和合力的冲量.(g=1Om/s2)(0.039N.s)讨论:如何计算拉力的冲量?分析: 据平行四边形定则有,IG和IT为平行四边形的临边,p为对角线。三点一法:1.对动量定理的理解和作用1)动量定理反映了冲量的作用效果:使物体动量发生变化(并非产生动量).2)动量定理是适用于任何外力作用的过程定理。(普适定理)例4:一高空作业的工人体重为600N,系一条长为L=5m的安全带,若工人不慎跌落时安全带的缓冲时间t=ls,则安全带受的冲力是多大?(g取10m/s2)方法一:过程的隔离法方法二:过程的整体法(1)所有外力作用时间相等时:I总=F合t (2)外力作用时间不相等时:I总=F1t1+ F2t2+注意:(1)是否考虑重力?(2)是否设定了矢量的正方向。(3)问题的研究对象是谁?思考:缓冲过程中,人受到平均冲力多大? 它等于安全带给人的平均冲力吗?训练1:(1996年全国)质量为1.Okg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5.Om.小球与软垫接触的时间是1.Os,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g取10m/s2)( C ) A.10N.s B.2ONs C.3ONs D.4ONs法一:隔离反弹过程。法二:全过程整体法 mg(t1+t3)-It2=0训练2:(2002年理综)蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.Om高处.已知运动员与网接触的时间为1.2s,若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(取g=1Om/s2) (1500N) 2.用动量定理解释现象:1)P一定时:F=P/t1/t 2) F一定时:P=Ftt (分析问题时,要把哪个量一定哪个量变化搞清楚)例5:玻璃杯从同一高度自由落下,掉落到硬质水泥地板易碎,掉落到松软地毯上不易碎.这是由于玻璃杯掉到松软地毯上(C ) A.所受合外力的冲量小 B.动量的变化量小 C.动量的变化率小 D.地毯对杯子的作用力小于杯子对地毯的作用力训练3:百米跑运动员在起跑阶段,猛力蹬击踏板,在短时间内完成加速过程,获得很大的起跑速度,起跑的好坏直接影响着比赛成绩,试分析其中包含的物理道理.解析:这是一道考查应用理论知识解决实际问题能力的题目,可先假定t相同,讨论力 F 与的关系; 或假定定,讨论F与t的关系.(1) 起跑时间t相同,则爆发力越大,获得的冲量越大,起跑的速度也越大;(2) 要获得某一起跑速度,则爆发力F越大,完成加速的时间t就越短.思考:在躺着的人身上放一块较大的石板,用大锤快速打击石块,只要石板不碎,人就不会受到伤害,这是为什么?3.系统的动量定理:F合t=PA+PBABI例6:如图所示,在光滑的水平面上用细线将质量分别2.Okg和4.0kg的A、B两小球连在一起,沿连线方向突然给球A一个5ONs的瞬时冲量,导致细线断裂,已知细线断裂时A球的速度为10m/s, 求B球的速度为多大 ?(7.5 m/s)训练4:质量为M的金属块和质量为m的木块通过细线系在一起,从静止开始以加速度在水中下沉,经过时间t细线断了,金属块和木块分开,再经过时间t木块停止下沉,此时金属块的速度多大?(设此时金属块还没有碰到水底面)解析:金属块和木块在细线未断情况下做匀加速运动说明系统所受的合外力(两块重力和浮力的合力)不变.线断后的受力情况仍未变,且系统内物体运动时间为已知量,因此可考虑对系统应用动量定理. 选金属块和木块组成系统为对象, 取向下为正方向,在全过程中: 合外力大小不变 F=(M+m) 作用时间 t+t 系统内物体的动量增量 P=P1+P2=M+m=M+O=M 由动量定理得 (M+m)(t +t)= M =(M+m)(t +t)/M思考:如果金属块和木块初状态以速度0匀速运动,情况又怎样?评注:动量定理不仅对单个质点成立,对系统也同样适用,只不过系统的内力不予考虑.因只有系统的外力才是引起系统动量变化的原因.而本题是动量定理与牛顿第二定律及运动学知识相结合的综合题,难度较大,但求解时巧妙的利用了整体法,将问题变得容易多了.3.动量定理在打击、碰撞、爆炸等问题中的应用1)碰撞、打击、爆炸的特点:1时间短; 2作用力大,是变力2)用F=m不易解决,但用I=P能较容易地处理。(涉及到速度的变化和平均冲力等问题)例7:据报道,一辆轿车高速强行超车时,与迎面弛来的另一辆轿车相撞.两车身因碰撞挤压,皆缩短了约0.5m,据测算相撞时两车速均约109km/h,试求碰撞过程中车内质量是60kg的人受到平均冲击力约为多少?(运算过程及结果均保留两位有效数字)解析:两车相碰时认为人随车一起做匀减速运动直到停止,此过程位移为0.5m 设人随车做匀减运动的运如时间为t,已知0=3Om/s 根据S=0t/2得 t=2s/t=1/30s 根据动量定理有 -Ft=0-m0 解得 F=5.4104N训练5:科学家设想未来的宇航事业中利用太阳帆来加速星际飞船,设该飞船所在地每秒每单位面积的光子数为n,光子平均波长为,太阳帆面积为S,反射率100%,设太阳光垂直射到太阳帆上,飞船总质量m,求飞船加速度的表达式.(光子动量 p=h/,h为谱朗克常量)解析:每个光子照射到帆面后动量变化量为:P=2h/ (光子等速反弹) 光子对帆面的作用力 F=2nSh/ 飞船的加速度 =F/m=2nSh/m训练6:(2003年武汉)发生在2001年9ll恐怖事件中,世贸中心双子楼,被一架飞机“轻松 ”地摧毁,而双子楼却先后坍塌.世贸的楼体是个钢架结构,两座楼的中间是个方柱子,一直从地下延伸到空中,每个层面有网络式的横条,鼠笼式结构可以从钢度、强度上抗击8级地震,12级台风,7500t的力,飞机充其量可把世贸的表皮撞破,不会伤害大楼筋骨,专家推断,筋骨的破坏是由于钢结构在燃料燃烧中软化造成的,试根据下列数据证实上面的观点。 波音767飞机整体重150t,机身长150m,当时低空飞行的巡航速度在500600km/h,视为15Om/s,从电视画面看飞机没有穿透大楼,大楼宽不超过100m,飞机在楼内大约运行50m.解析:假设飞机在楼内匀减速为零,则S=平t150t/2 得 t=2S/150=2/3s 由动量定理知 -Ft=0-m0 解得 F=3.375107N 即飞机撞击大楼的力为3375t,即使按飞机在楼内匀速计算,撞击力也不会达到7500t,可见,上述推断是正确的。训练7:如图所示,一个质量m=3kg的物体静止在光滑的水平面上, 受到与水平方向成 60角的力F作用,F=9N,经2s时间,求:60F (1)物体重力冲量大小; (2)力F的冲量大小; (3)物体动量的变化量.补充:求各个力的功。评注:(1)求解一个力的冲量依据I=Ft,只考虑力和其作用时间两个因素,与该冲量作用的效果无关.而动量的变化量,可以通过合力的冲量来表示,特别对变力或曲线运动显得尤为方便.(2)求动量变化,既可以利用定义式P=mt-m0求 解;也可以利用动量定理P=F合t求解.特别是恒力作用下的曲线运动,利用动量定理比利用定义式方使得多.练习8:(北京海淀区试题)离子发动机是一种新型空间发动机,它能给卫星轨道纠偏或调整姿态提供动力.其中有一种离子发动机是让电极发射的电子撞击氙原子,使之电离,产生的氙离子经加速电场加速后从尾喷管喷出,从而使卫星获得反冲力,这种发动机通过改变单位时间内喷出离子的数目和速率,能准确获得所需的纠偏动力.假设卫星(连同离子发动机)总质量为M,每个氙离子的质量为m,电量为q,加速电压为U,设卫星原处于静止状态,若要使卫星在离子发动机起动的初始阶段能获得大小为F的动力,则发动机单位时间内应喷出多少氨离子?此时发动机发射离子的功率为多大?解析:设离子喷出尾喷管时的速度为,单位时间内喷出n个离子, 则t时间内喷出离子数为 nt 由动量定理有 F=P/t= ntm/t=nm 发射离子过程,卫星和发出的离子系统动量守恒。设喷出离子总质量为m,则有 m=(M-m)星 m 星故在离子发动机启动的初始阶段,卫星的速度可以忽略。右动能定理的 qU=m2/2 =(2qU/m)1/2 F=nm(2qU/m)1/2 n= F/(m2qU)1/2 P=nqU=qUF/(m2qU)1/2第二专题 动量守恒定律知识要点:1.表达式:1)P=P (系统相互作用前的总动量P等于相互作用后的总动量p) 2)P=0 (系统总动量增量为零) 3)P1=-P2(相互作用的两个物体组成系统,两物体动量增量大小相等、方向相反) 4)m11+m22=m11+m22 (两物体组成系统,作用前总动量等于作用后总动量)2.适用条件:1)系统不受外力或系统所受合外力为零. 2)系统所受的合外力虽不为零,但内力远远大于外力(如碰撞时的、打击、爆炸时的mg、发射炮弹时的).(这是物理学中经常用到的近似处理问题的思想方法) 3)系统F合0,但F=0则P=0。3.解题步骤(通过例题3总结)1)选取研究对象,确定系统由哪几个物体组成,分析系统的受力情况,判断系统动量是否守恒. 2)明确研究的是哪一个过程,确定初、末状态.3)规定正方向(一般以0方向为正),分析相互作用前后各物体动量的大小及方向(正、负).4)用动量守恒定律列方程 .5)解方程求未知量并讨论.三点一法:1.怎样理解定律内容中的“系统”“不受外力”“所受外力之和为零”所有相互作用的物体称为系统.系统中各物体之间的相互作用力叫做内力.外部其他物体对系统的作用力叫做外力.“不受外力”指外部其他物体对系统没有作用力,系统中内力产生的冲量等大反向,使得系统内相互作用的物体的动量改变量等大反向,系统总动量保持不变。ABC例1:如图示,A、B两物体质量之比MAMB=32,他们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间的摩擦因数相同,地面光滑,当弹簧突然释放时,则(B、C) A.A、B系统动量守恒 B.A、B、C系统动量守恒 C.小车向左运动 D. 小车向左运动法一:力的观点 FC合决定小车的运动方向。法二:动量的观点 选向右为正 mBB+ mA(-A)+ m车车=0 则 车=(PA-PB)/m车思考:系统机械能是否守恒?2.“系统总动量不变”:指在具备动量守恒的整个过程中,系统的总动量都保持不变。例2:如图所示,两带电的金属球在绝缘的光滑水平桌面上,沿同一直线相向运动,A球带电为-q,B球带电为+2q.两球之间的作用力正比于它们电量的乘积,反比于它们之间距离的平方,带同号电荷是排斥立,带异号电荷是吸引力,下列说法正确的是(AD)-+-q+2q A.相碰前两球的运动过程中总动量守恒B.相碰前两球的总动量随着两球的距离逐渐减小而增大 C.相碰分离后两球的总动量小于相碰前两球的总动量 D.相碰分离后任一瞬间两球的总动量等于碰前两球的总动量 例3:如图所示,在光滑水平面上叠放着质量为mA与mB两物体,A、B间摩擦因数为,质量为m的小球以速度水平射向A物,以/3速度弹回,则A与B相对静止后的速度变为 4m/3(mA+FB) .ABm法一:隔离法法二:整体法思考:1)如m与A作用时间极短,计算作用结束瞬间A的速度; 2)系统生的热。Q=Q1+Q2 3)A在B上相对滑行的距离。S相=Q2/mg 3.应用动量守恒定律列方程时应注意以下五点 1矢量性:列式前须规定正方向,凡与正方向相同正值,反之取负值,将矢量式化为标量式.2瞬时性:定律中速度为相互作用前后的瞬时速度(碰撞、爆炸等)3同系性:定律表达式中所有速度均应是相对于同一惯性参考系而言的,一般选地面为参考系.4同时性:定律表达式m11+m22=m11+m22中1、2表示相互作用前同一时刻两物体的速度,1、2 表示相互作用后同一时刻两物体的速度.5普适性:适用于宏观、微观领域内两个或两个以上物体组成系统(核反冲、粒子散射)例3一辆质量为6Okg的小车上有一质量为40kg的人(相对车静止)一起以2m/s的速度向前运动,突然人相对车以4 m/s的速度向车后跳出去,则车速为多大?下面是几个学生的解答,请指出错在何处.解析:(1)人跳出车后,车的动量为6O,人的动量为40(4+)由动量守恒定律: (60+40)2=6O+40(4+) 解得:=0.4 m/s (没有注意矢量性)(2)选车的方向为正,人跳出车后,车的动量为6O,人的动量-404,由动量守恒定律: (60+40)2=6O-404,解得=6m/s (没有注意相对性)(3)选车的方向为正,人跳出车后的动量为60, 人的动量-40(4-2),由动量守恒定律得 (60+40)2=6O-40(4-2),解得= m/s (没有注意瞬时性) (4)选地为参照物,小车运动方向为正,据动量守恒定律,(60+40)2=6O-40(4-) 解得, =3.6m/S此法正确. 答案:3.6m/s训练1:鱼雷快艇的总质量为M,以速度前进,快艇沿前进方向发射一颗质量为m的鱼雷后,快艇速度减为原来的1/3,则鱼雷的发射速度为(2M-m)/3m .(不计水的阻力) 注意:题目中没做说明,则为对地速度。训练2:质量为6Okg的人,以5m/s的速度迎面跳上质量为9Okg,速度为2m/s的小车后,与小车共同运动的速度大小为_m/s,方向_.若人是从后面跳上小车的,则人与小车共同运动的速度大小为_m/s, 方向_.(0.8,人的初速度方向相同.3.2,与人的初速度方向相同)4.动量守恒定律应用中的临界问题与多体问题1)相互作用的两物体相距最近、避免相碰的临界条件:甲=乙.2)物体开始反向运动的临界条件:=03)两个以上的物体组成的物体系动量守恒:1全过程P=0;2任意两个相互作用物体P=0.例4:(2002年沈阳)如图所示,甲乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车质量之和为M=30kg,乙和他的冰车质量之和也是M=3Okg.游戏时,甲推着一个质量m=15kg的箱子以大小为0=2m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处,乙迅速抓住.若不计冰面摩擦,求甲至少要以多大速度(相对于地)将箱子推出,才能避免与乙相撞? (5.2m/s)分析:选甲初速度为正 不相撞则末态速度相等: 甲=乙 甲推出箱子过程: (M+m)0=M甲+m 乙接箱子过程: m-M0=(M+m)乙训练3:(2002年全国)质量为M的小船以速度内行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾,现小孩a沿水平方向以速度(相对于静止水面)向前跃人水中,然后小孩b沿水平方向以同一速率(相对于静止水面)向后跃人水中,求出小孩b跃出后小船的速度。(M+2m)0/M思考:1)小孩同时跃出与一前一后跃出有何不同?为什么? 2)如果为对船速度情况又咋样?5.动量守恒定律的拓展应用:两个物体无相互作用,也可以把它转化为动量守恒模型. 例5:在平直公路上,质量为M的汽车拉着质量为m的拖车匀速行驶,速度为,在某一时刻拖车脱钩了,若汽车的牵引力保持不变,则在拖车刚停止运动的瞬间,汽车的速度多大? (M+m)/M思考:(1)若不用动量守恒,你能用其他方法求解吗? (2)若拖车停止以后,求汽车的速度,还能用动量守恒求解吗?训练4:质量为m的木块和质量M的金属块用细线系在一起,处于深水中静止,剪断线后,木块刚要露出水面时的速度为吨,此时金属块下沉未到水底,求金属块此时的速度是多大? (m0/M)6.动量守恒定律与数学归纳例6:甲、乙两人做抛球游戏,如图所示,甲站在一辆平板车上,车与水平地面间摩擦不计.甲与车的总质量M=100kg,车上的人手拿一质量m=2kg的球,乙站在车的对面的地上,身旁有若干质量不等的球.开始车静止,甲将球以速度(相对于地面)水平抛给乙,乙接到抛来的球后,马上将另一只质量为m=2m的球以相同速度水平抛回给甲,甲接到后,再以相同速度将此球抛给乙,这样反复进行,乙每次抛回给甲的球的质量都等于他接的球的质量的 2倍,求:(l)甲第二次抛出球后,车的速度大小. (2)从第一次算起,甲抛出多少个球后,再不能接到乙抛回来的球.解析:(1)以甲和车及第一个球为系统,选向右 为正方向,设甲第一次抛出球的后退 速度为1,由动量守恒得: 0=m-M1 设甲第二次抛出球后速度为2,甲接抛2m球过程有: -2m-M1=2m-M2 由式得: M2=22m+M1 解出 2=5m/M=/10 方向向右 2)甲第三次抛出球后速度为3,接抛4m球过程有:-4m-M1=4m-M2 M3=23m+M2 以此类推 甲第n次抛出球后速度为n Mn=2nm+Mn-1 n=(2n+2n-1+22+1)m/M 要使甲接不到乙抛回来的球,必须有 n 即 (2n+2n-1+22+1)m/M1 解得 n 4训练5:人和冰车的总质量为M,另有一木球,质量为m,M:m =31:2,人坐在静止于水平冰面的冰车 上,以速度(相对于冰面)将原来静止的木球沿冰面推向正前方的固定档板.球与冰面、 车与冰面的摩擦及空气阻力均可忽略不计,设球与挡板碰撞后反弹速率与碰前速率相等, 人接住球后再以同样的速度(相对于冰面)将球沿冰面向正前方推向挡板,求人推多少次 后才不能接到球? (9 次)法一:设第n次推球后人和冰车速度为n,选推球方向为正方向。 第一次推球过程: M1=m 第二次接、推球过程: -M1-m=-M2+m M2=3m 第三次接、推球过程: -M2-m=-M3+m M3=5m 以此类推 第n次接、推球过程: -Mn-1-m=-Mn+m Mn=(2n-1)m当 n=(2n-1)m/M时不能再接球又 M:m =31:2 n8.25 取n=9 法二:系统动量定理 每接一次球有 Ft=2m n次挡板对球的冲量为 I=2nm 选人后退方向为正方向,n次后人和m球速度相等时再也接不到球对人和m球有 I=M+m又 M:m =31:2 n8.25 取n=9 评注:本题在求解过程中,需反复运用动量守恒定律关系列式,最终找出第n次推球后人与冰车速度的一般关系表达式从而求得结果.这对同学们的推理演绎能力及数学演算能力要求较高.训练6:(2004年天津)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6kg.m/s,运动中两球发生碰撞, 碰撞后A球的动量增量为-4kg.m/s, 则(A)A.左方是A球,碰撞后A、B两球速度大小之比为2:5B.左方是A球,碰撞后A、B两球速度大小之比为1:10C.右方是A球,碰撞后A、B两球速度大小之比为2:5D.右方是A球,碰撞后A、B两球速度大小之比为1:10评注:动量守恒定律的矢量性即是重点又是难点,解题中应遵循以下原则:先确定正方向,与正方向相同的矢量的取正号,与正方向相反的矢量取负号,未知矢量当作正号代入式中,求出的结果若大于零,则与正方向相同,若小于零则与正方向相反.训练7:甲、乙两只小船同时做平行逆向行驶,船和船上的总质量分别是ml=500kg, m2=100Okg, 当它们头尾相齐时,由每一只船上各投质量为m=50kg的麻袋到另一个船上去,结果甲船停下来,而乙船则以=8.5m/s的速度沿原来的方向继续前进,求交换麻袋前两只船的速度各是多少?(设水的阻力不计) (甲船速度为1=1m/s, 乙船速度为2=9m/s)方法一:选每条船及抛过来的麻袋作为研究的系统而列出方程方法二:选两船及其上的麻袋作为研究的系统而列出方程. 第三专题 碰撞、爆炸和反冲知识要点:弹性碰撞:P=0、E机=0(只产生机械能转移,系统内无机械能损失)非弹性碰撞:P=0、E机0(部分机械能转化为物体内能)完全非弹性碰撞:P=0、Ek最大(碰后粘在一起)2.分类一、碰撞(直接作用)1.特点:(1) 时间短(2)内力远大大于外力. 二、爆炸:1.内力远大于外力,动量守恒; 2.由其他形式的能转化为机械能.三、反冲:反冲指在系统内力作用下,系统内一部分物体向某一方向发生动量变化时,系统内其余部分向相反方向发生动量变化。说明:三类现象P=0,E机一般不守恒。三点一法:1.解答爆炸、碰撞、打击、反冲问题都要考滤应用动量观点。mM0例1:质量为M的木块置于光滑水平面上,一质量为m的子弹以水平速度0打入木块并停在木块中, 如图所示,此过程中木块向前运动位移为s,子弹打人木块深度为d,则( C)A.Sd B.s=d C.s1 则 s乙;碰后甲乙或甲反向例3:质量相等的A、B两球在光滑水平面上沿同一直线,同一方向运动,A球的动量是7kgm/s,B球的动量是5kgm/s.当A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能值是(A) A.PA=6kgm/S PB=6kgm/s B.PA=3kgm/s, PB=9kgm/s C.PA=-2kgm/s, PB=14kgm/s D.PA=-4kgm/s, PB=17kgm/s训练1:质量为m的小球A,在光滑的水平面上以速度0与质量为2m的静止小球B发生正碰,碰撞后A球的动能恰变为原来的,则B球的速度大小可能是(AB) A.0/3 B.20/3 C.40/9 D.80/9训练2:甲、乙两球在水平光滑的轨道上同方向运动,已知它们的动量分别是P甲=5kgm/s,P乙=7kgm/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为lOkgm/s,则两球质量m甲与m乙间的关系可能是下面的哪几种(C) A.m甲=m乙B. m甲=2m乙 C. m甲=4m乙D. m甲=6m乙分析:碰前: 5/m甲7/m乙 m甲/m乙5/7 碰撞: 5+7=10+P/甲 25/2m甲+49/2m乙4/2m甲+100/2m乙 m甲/m乙21/51碰后: 2/m甲1/54.关于爆炸问题例4:(2003年春全国)有一颗竖直向上发射的炮弹,炮弹的质量为M=6.Okg(内含炸药的质量可以忽略不计),射出的初速度0=6Om/s.当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m=4.Okg.现要求这一片不能落到以发射点为圆心、以 R=600m为半径的圆周范围内,则刚爆炸完时两弹片的总动能至少多大?(g=10m/s2,忽略空气阻力) (6.0104J)训练3:手榴弹在离地面高h处的速度方向恰好沿水平方向向左,速度的大小为,此时,手榴弹炸裂成质量相等的两块,设消耗的火药质量不计,爆炸后,前半块的速度方向仍沿水平向左,速度大小为3,那么后半块在炸后的瞬间其速度多大?方向如何? (向右)5.关于反冲问题例5:火箭喷气发动每次喷出m=200g气体,喷出气体相对地面的速度为=1000m/s,设火箭初始质量M=300kg,发动机每秒喷气20次,在不考虑地球引力及空气阻力的情况下,火箭发动机ls末的速度是多大?( 13.5 m/s)6.“人船模型”:平均动量守恒1)是P=0的拓展应用,把与m的关系推广到m和s的关系,提供了一种解题思路和解决问题的方法.2)适用条件:1两个物体组成的系统动量守恒;2系统合动量为零(0=0或t=0).例6:长为L、质量为M的小船停在静水中,一个质量为m的人站在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?分析:设人和船速分别为1和2,选1为正方向 0=m1+M2 讨论:1人匀速,船匀速;2人匀加速,船匀加速;3人停,船停。 当人匀变速时,有 =/2 代入得 0=m+M 即 0=mS1+MS2 又 S1+S2=S相 思考: 人的位移为什么不是船长? 若开始时人船一起以某一速度匀速运动,则还满足s2/s1=M/m吗?训练4:气球的质量为M,下面拖一条质量不计的软梯,质量为m的人站在软梯上端距地面高为H, 气球保持静止状态,求:(l)人安全到地面软梯的最小长度;(M+m)H/M HM/(M+m) (2)若软梯长为H,则人从软梯上端到下端时,人距地面多高.训练5:(2002年广东)下面是一个物理演示实验,它显示:图中自由下落的物体A和B经反弹后,B能上升到比初位置高得多的地方.A是某种材料做成的实心球,质量ml=0.28kg,在其顶部的凹坑中插着质量m2=0.lOkg的木棍B.B只是松松地插在凹坑中,其下端与坑底之间有小空隙.将此装置从A下端离地板的高度H=1.25m处由静止释放,实验中,A触地后在极短时间内反弹, 且其速度大小不变; 接着木棍B脱离球A开始上升,而球A恰好停留在地板上,求木棍B上升的ABm1m2高度.(h =4.05m.) (重力加速度g=10m/s2)评注:1.考查动量守恒和运动学规律的综合应用,同时考查考生把实际问题简化成物理模型能力. 2.该题立意新颖,能否把题中的物理情景转化为模型是关键,A反弹后经过极短时间与自由下落的B发生碰撞,碰后A静止,属非弹性碰撞,碰撞过程动量守恒.3.该题虽用动量守恒和运动学公式可求解,但其中隐含两物体相碰时机械能的转化和分配问题,一个物体下落到地面与地面相碰,若没有非机械能转化为机械能,则其机械能不会增加,反弹后高度不会比下落处高,但若两个物体下落,当装置合适时,有可能其中一个反弹的比它下落处高.训练6:一个连同装备总质量为M=100kg的宇航员,在距离飞船s=45m处与飞船处于相对静止状态, 他准备对太空中的哈勃望远镜进行维修.宇航员背着装有质量为m0=0.5kg的02贮气筒,筒内有一个可以使02以=50m/s的速度喷出的喷嘴.宇航员在维修完毕哈勃望远镜后,必须向着返回飞船方向的反方向释放02,才能回到飞船,同时又必须保留一部分02供途中宇航员呼吸之用,宇船员的耗氧率为Q=2.510-4kg/s。如果不考虑喷出02对设备与宇航员总质量的影响,则:(1)喷出多少02,宇航员才能安全返回飞船?(0.05kg0.45kg) (2)为了使总耗氧量最低,应该一次喷出多少氧气?返回时间是多少? (0.15kg 600s)第四专题 解决力学问题的三个基本观点知识要点:一、解答动力学问题的三个基本观点l.力的观点物体受力情况F=ma物体加速度S、t公式物体运动情况(1) 两类问题:(2) 条件:匀变速运动(包括直线和曲线运动),对于一般的变加速运动,不能用此观点来求解.2.动量的观点:Ft=P、P=0.3.能量的观点: W合=EK= mt2/2 -m02/2、EK增=EP减二、力学规律的选用原则1.牛顿第二定律:1)研究某一物体所受力的瞬时作用与物体运动关系时(F瞬=ma瞬) 2)物体受恒力作用,涉及a、t问题.2.动量定理:不涉及a而涉及F、t、m、的问题(特别是冲击类问题,时间短且F冲随t变化)3.动能定理:不涉及a、t,而涉及W、F、S、m、(恒、变力).4.机械能守恒定律:只有重力和弹力做功而又不涉及a、t的问题。 5.两个守恒定律:研究的对象为系统,且它们之间有相互作用(注意是否满足守恒的条件。6.能的转化和守恒定律:涉及相对位移问题(Wf克=S相=E机减=E内增)7.系统动量守恒定律、能的转化和守恒定律(E机与E其转换):在涉及有碰撞、爆炸、打击、绳绷紧等物理现象三、力学综合题的基本解题思路1.认真审题,弄清题意:建立关于所求问题的比较清晰的物理图景,构成解题的思维框架。1)挖掘题目中的隐含条件1用简单的形式(包括文字、符号、图表、数据等)有序地记录信息,并进行分析、推理、从信息中找出对解题有用的已知条件;2通过题目中的关键字、词、句以及题目附图,挖掘并转化隐含条件。2)重视对物体过程的分析所谓物理过程是指物理现象或事实发生的前因后果和中间状态等完整经历的总称.审题时,要弄清题目中的物理过程及其得以进行的条件,明确运动的性质,把握过程中的不变量、变量、关联量的相互关系,并找出与物理过程相适应的物理规律及题目中的某种等量关系.2.确定研究对象,分析受力情况和运动情况选择研究对象原则:1选择已知量充分且涉及所求量的物体为研究对象; 2选择能够满足某种力学规律的物体(或物体系)为研究对象.研究对象确定后,就必须对其进行受力分析和运动分析,受力分析基本方法是根据研究对象和周围物体的关系及其运动情况,按场力、弹力、摩擦力的顺序依次分析出物体所受的全部力.对研究对象进行运动分析时要注意两个方面:一是要注意运动的连续性,即当物体从一种运动变为另一种运动时,找出两种运动的物理量一一一速度、位移、加速度的关系;二是要注意运动的可能性,即物体在一定条件下,它的运动可能出现各种情况,对可能出现的运动情况要全面地进行分析,准确地作出判断。3.明确解题途径,正确运用规律分析物体的运动过程,明确物体运动情况和受力情况,找出与之相适应的物理规律及题目中给出的某种等量关系,列出方程或方程组求解。4.回顾解题过程,分析解题结果在解题后要回顾一下解题时的思维过程,找出解题的关键所在, 是否还有其他解题法,所得结果是否正确合理。三点一法:力速度F=m冲量动量I=P功动能W=EK改变改变改变1三组过程量与状态量的因果关系注意:物体动量变化时,动能不一定变化;动能一旦发生变化,动量必发生变化。例1:(全国高考题)若物体在运动过程中受到的合外力不为零,则(B)A.物体的动能不可能总是不变的B.物体的动量不可能总是不变的 C物体的加速度一定变化D.物体的速度的方向一定变化训练1:下列一些说法正确的是(D) 一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同; 一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者为零,或者大小相等符号相反;在同样时间内,作用力与反作用力的功大小不一定相等,但正负号一定相反;在同样的时间内,作用力和反作用力的功大小不一 定相等,正负号也不一定相反. A. B. C. D. 评注:本题主要是考查了冲量和功的概念,只要有力作用在物体上,经过一定时间则冲量一定不为零,而功是在力的方向有位移,两个力相等,若运动的位移不同,则功不一定相同. 2.动量守恒定律与机械能守恒定律:1)守恒条件不同 2)动量守恒时,机械能不一定守恒(爆炸、碰撞、 反冲现象);3)系统的机械能守恒时,其动量也不一定守恒.(抛体运动)4)P=0矢量式,须注意方向,可分解; EK=0标量式,功和能只能求代数和,不能按矢量法则进行分解或合成.0例2:(1992年全国)如下图所示的装置中, 假设地面是光滑的,弹簧是轻质的。子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论