已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数概念与运算基础知识总结知识清单1导数的概念函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f(x)或y|。即f(x)=。 说明:(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。由导数的定义可知,求函数y=f(x)在点x处的导数的步骤(可由学生来归纳):(1)求函数的增量=f(x+)f(x);(2)求平均变化率=;(3)取极限,得导数f(x)=。2导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x)处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x)处的切线的斜率是f(x)。相应地,切线方程为yy=f/(x)(xx)。3几种常见函数的导数: ; ; ; .4两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:=(v0)。形如y=f的函数称为复合函数。复合函数求导步骤:分解求导回代。法则:y|= y| u|导数应用知识清单1 单调区间:一般地,设函数在某个区间可导,如果,则为增函数;如果,则为减函数;如果在某区间内恒有,则为常数;2极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;3最值:一般地,在区间a,b上连续的函数f在a,b上必有最大值与最小值。求函数在(a,b)内的极值;求函数在区间端点的值(a)、(b);将函数 的各极值与(a)、(b)比较,其中最大的是最大值,其中最小的是最小值。4定积分(1)概念:设函数f(x)在区间a,b上连续,用分点ax0x1xi1xixnb把区间a,b等分成n个小区间,在每个小区间xi1,xi上取任一点i(i1,2,n)作和式In(i)x(其中x为小区间长度),把n即x0时,和式In的极限叫做函数f(x)在区间a,b上的定积分,记作:,即(i)x。这里,a与b分别叫做积分下限与积分上限,区间a,b叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。基本的积分公式:C;C(mQ, m1);dxlnC;C;C;sinxC;cosxC(表中C均为常数)。(2)定积分的性质(k为常数);(其中acb。(3)定积分求曲边梯形面积由三条直线xa,xb(ab),x轴及一条曲线yf(x)(f(x)0)围成的曲边梯的面积。如果图形由曲线y1f1(x),y2f2(x)(不妨设f1(x)f2(x)0),及直线xa,xb(ab)围成,那么所求图形的面积SS曲边梯形AMNBS曲边梯形DMNC。典型例题一 导数的概念与运算EG:如果质点A按规律s=2t3运动,则在t=3 s时的瞬时速度为( )A. 6m/s B. 18m/s C. 54m/s D. 81m/s变式:定义在D上的函数,如果满足:,常数,都有M成立,则称是D上的有界函数,其中M称为函数的上界.【文】(1)若已知质点的运动方程为,要使在上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.【理】(2)若已知质点的运动方程为,要使在上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.EG:已知的值是( )A. B. 2 C. D. 2变式1:( )A2C3D1变式2:( )ABCD根据所给的函数图像比较变式:函数的图像如图所示,下列数值排序正确的是( ) A. y B. C. D. O 1 2 3 4 x EG:求所给函数的导数:。变式:设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0时,0.且g(3)=0.则不等式f(x)g(x)0的解集是A(3,0)(3,+) B(3,0)(0, 3)C(, 3)(3,+) D(, 3)(0, 3)EG:已知函数.(1)求这个函数的导数;(2)求这个函数在点处的切线的方程.变式1:已知函数.(1)求这个函数在点处的切线的方程;(2)过原点作曲线yex的切线,求切线的方程.变式2:函数yax21的图象与直线yx相切,则a( )A. B. C. D. 1EG:判断下列函数的单调性,并求出单调区间:变式1:函数的一个单调递增区间是A. B. C. D. 变式2:已知函数(1)若函数的单调递减区间是(-3,1),则的是 . (2)若函数在上是单调增函数,则的取值范围是 .变式3: 设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.()用表示a,b,c;()若函数在(1,3)上单调递减,求的取值范围.EG:求函数的极值.求函数在上的最大值与最小值.变式1: 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点( )A1个 B2个 C3个D4个变式2:已知函数在点处取得极大值,其导函数的图象经过点,如图所示.求:()的值;()的值.变式3:若函数,当时,函数极值,(1)求函数的解析式;(2)若函数有3个解,求实数的取值范围变式4:已知函数,对x1,2,不等式f(x)c2恒成立,求c的取值范围。EG:利用函数的单调性,证明:变式1:证明:,变式2:(理科)设函数f(x)=(1+x)2ln(1+x)2.若关于x的方程f(x)=x2+x+a在0,2上恰好有两个相异的实根,求实数a的取值范围.EG: 函数若恒成立,求实数的取值范围 变式1:设函数若恒成立,求实数的取值范围.变式2:如图,曲线段OMB是函数的图象,轴于点A,曲线段OMB上一点M处的切线PQ交x轴于点P,交线段AB于点Q,(1)若t已知,求切线PQ的方程 (2)求的面积的最大值变式3:用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折900角,再焊接而成,问该容器的高为多少时,容器的容积最大?最大的容积是多少?变式4:某厂生产某种产品件的总成本(万元),已知产品单价的平方与产品件数成反比,生产100件这样的产品单价为50万
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艾滋病性与健康演讲
- 名校大学生辩论赛辩题-大学生辩论赛辩题
- 组织细胞吞噬性脂膜炎的临床护理
- 美容保健技术习题及答案
- 二零二四年度互联网教育平台运营合同5篇
- 2024年修订版住宅买卖合同模板3篇
- 四川省建设厅聘用合同签订指南
- 急性风湿热的临床护理
- 烟草厂施工合同
- 老年肝衰竭的临床护理
- 5.5 跨学科实践:制作望远镜到西安 八年级物理上册人教版2024
- 医院改扩建工程可行性研究报告(论证后)
- 2024水样采集与保存方法
- 借款协议(父母借款给子女买房协议)(二篇)
- 糖尿病患者体重管理专家共识(2024年版)解读
- 4D厨房区域区间管理责任卡
- 针灸推拿学专业大学生职业生涯规划书
- 设备故障报修维修记录单
- 发展经济学-马春文主编-课后习题集答案解析
- 卫生院基本公共卫生服务项目工作进度表
- 预制管桩技术交底
评论
0/150
提交评论