第1-2课时集合教案.doc_第1页
第1-2课时集合教案.doc_第2页
第1-2课时集合教案.doc_第3页
第1-2课时集合教案.doc_第4页
第1-2课时集合教案.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

胜利始于坚持 成功始于努力1集合-集合的基础知识【知识点内容】1.理解集合的有关概念 2.元素与集合的关系 3.掌握集合的三种表示方法 4.集合中元素的特性集合:(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、元素通常用小写的拉丁字母表示,如a、b、c、元素与集合的关系:(1)属于:如果a是集合A的元素,就说a属于A,记作aA(2)不属于:如果a不是集合A的元素,就说a不属于A,记作要注意“”的方向,不能把aA颠倒过来写. 1. 列举法集合的三种表示方法: 2.描述法 3.图示法集合元素的三个特性:1. 确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了 2. 互异性:集合中的元素一定是不同的 3. 无序性:集合中的元素没有固定的顺序【考点及要求】了解集合含义,体会“属于”和“包含于”的关系,全集与空集的含义【基础知识】集合中元素与集合之间的关系:文字描述为 和 符号表示为 和 常见集合的符号表示:自然数集(非负整数集) N 正整数集 N+ 整数集 Z 有理数集 Q 实数集 R 集合的表示方法1 2 3 集合间的基本关系:1相等关系: 2子集:是的子集,符号表示为或 3 真子集:是的真子集,符号表示为或不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的 【基本训练】1下列各种对象的全体,可以构成集合的是 (1) 某班身高超过的女学生;(2)某班比较聪明的学生;(3)本书中的难题 (4)使最小的的值2 用适当的符号填空: ; 3用描述法表示下列集合: 由直线上所有点的坐标组成的集合;4若,则;若则5集合,且,则的范围是 【典型例题讲练】例1 设集合,则练习: 设集合,则例2已知集合为实数。(1) 若是空集,求的取值范围;(2) 若是单元素集,求的取值范围;(3) 若中至多只有一个元素,求的取值范围;练习:已知数集,数集,且,求的值【课堂小结】集合的概念及集合元素的三个特性【课堂检测】1 设全集集合,则2 集合若,则实数的值是 3已知集合有个元素,则集合的子集个数有 个,真子集个数有 个4已知集合A1,3,21,集合B3,若,则实数 5已知含有三个元素的集合求的值.2集合-子集,真子集,全集,空集【知识点内容】(一)子集、真子集的概念 (二)子集、真子集的性质 (三)集合相等(一)子集:如果集合A中的每一个元素都是集合B中的元素,那么集合A叫做集合B的子集,记作或. 若集合P中存在元素不是集合Q的元素,那么P不包含于Q,或Q不包含P.记作 真子集:若集合A是集合B的子集,且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集. 或.(二)子集、真子集的性质:传递性:若,则空集是任意集合的子集,是任意非空集合的真子集.(三)集合相等:若集合A中的元素与集合B中的元素完全相同则称集合A等于集合B,记作A=B. 【典型例题讲练】例3 已知集合(1) 若,求实数的取值范围。(2) 若,求实数的取值范围。(3) 若,求实数的取值范围。练习:已知集合,满足,求实数的取值范围。例4定义集合运算:,设集合,则集合的所有元素之和为 练习:设为两个非空实数集合,定义集合 ,则中元素的个数是 【课堂小结】:子集,真子集,全集,空集的概念,两集合相等的定义,元素与集合之间的隶属关系与集合与集合之间的包含关系【课堂检测】1 定义集合运算:,设集合,则集合的所有元素之积为 2.设集合A=,B=,若AB,则的取值范围是 3.若1,2A1,2,3,4,5则满足条件的集合A的个数是 4设集合,若求实数的值.【课后作业】:1若集合中只有一个元素,则实数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论