2018年湖北省孝感市中考数学试卷.doc_第1页
2018年湖北省孝感市中考数学试卷.doc_第2页
2018年湖北省孝感市中考数学试卷.doc_第3页
2018年湖北省孝感市中考数学试卷.doc_第4页
2018年湖北省孝感市中考数学试卷.doc_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题10小题,每小题3分,共30分,在每小题出的四个选项中只有一项是符合题目求的,不涂,错涂或涂的代号超过一个,一律得0分)1(3分)(2018孝感)的倒数是()A4B4CD162(3分)(2018孝感)如图,直线ADBC,若1=42,BAC=78,则2的度数为()A42B50C60D683(3分)(2018孝感)下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()ABCD4(3分)(2018孝感)如图,在RtABC中,C=90,AB=10,AC=8,则sinA等于()ABCD5(3分)(2018孝感)下列说法正确的是()A了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B甲乙两人跳绳各10次,其成绩的平均数相等,S甲2S乙2,则甲的成绩比乙稳定C三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D“任意画一个三角形,其内角和是360”这一事件是不可能事件6(3分)(2018孝感)下列计算正确的是()Aa2a5=B(a+b)2=a2+b2C2+=2D(a3)2=a57(3分)(2018孝感)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A52B48C40D208(3分)(2018孝感)已知x+y=4,xy=,则式子(xy+)(x+y)的值是()A48B12C16D129(3分)(2018孝感)如图,在ABC中,B=90,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则PBQ的面积S随出发时间t的函数关系图象大致是()ABCD10(3分)(2018孝感)如图,ABC是等边三角形,ABD是等腰直角三角形,BAD=90,AEBD于点E,连CD分别交AE,AB于点F,G,过点A作AHCD交BD于点H则下列结论:ADC=15;AF=AG;AH=DF;AFGCBG;AF=(1)EF其中正确结论的个数为()A5B4C3D2二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)11(3分)(2018孝感)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是 千米12(3分)(2018孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为 cm213(3分)(2018孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(2,4),B(1,1),则方程ax2=bx+c的解是 14(3分)(2018孝感)已知O的半径为10cm,AB,CD是O的两条弦,ABCD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是 cm15(3分)(2018孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,记a1=1,a2=3,a3=6,a4=10,那么a4+a112a10+10的值是 16(3分)(2018孝感)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CEx轴交双曲线于点E,连接BE,则BCE的面积为 三、用心做一做做,显显自己的能力!(本大题共8小题,满分72分)17(6分)(2018孝感)计算:(3)2+|4|+4cos3018(8分)(2018孝感)如图,B,E,C,F在一条直线上,已知ABDE,ACDF,BE=CF,连接AD求证:四边形ABED是平行四边形19(9分)(2018孝感)在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗队飘,引我成长”知识竞赛,赛后机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成A,B,C,D,E五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)D类所对应的圆心角是 度,样本中成绩的中位数落在 类中,并补全条形统计图;(2)若A类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图法求恰好抽到1名男生和1名女生的概率20(7分)(2018孝感)如图,ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:作BAC的平分线AM交BC于点D;作边AB的垂直平分线EF,EF与AM相交于点P;连接PB,PC请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是 ;(2)若ABC=70,求BPC的度数21(9分)(2018孝感)已知关于x的一元二次方程(x3)(x2)=p(p+1)(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22x1x2=3p2+1,求p的值22(10分)(2018孝感)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元试销时A型净水器每台售价2500元,B型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70a80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值23(10分)(2018孝感)如图,ABC中,AB=AC,以AB为直径的O交BC于点D,交AC于点E,过点D作DFAC于点F,交AB的延长线于点G(1)求证:DF是O的切线;(2)已知BD=2,CF=2,求AE和BG的长24(13分)(2018孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(2,0),B(0,6),将RtAOB绕点O按顺时针方向分别旋转90,180得到RtA1OC,RtEOF抛物线C1经过点C,A,B;抛物线C2经过点C,E,F(1)点C的坐标为 ,点E的坐标为 ;抛物线C1的解析式为 抛物线C2的解析式为 ;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点若PCA=ABO时,求P点的坐标;如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当5x2时,求h的取值范围2018年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题10小题,每小题3分,共30分,在每小题出的四个选项中只有一项是符合题目求的,不涂,错涂或涂的代号超过一个,一律得0分)1(3分)(2018孝感)的倒数是()A4B4CD16【解答】解:的倒数为:4故选:B2(3分)(2018孝感)如图,直线ADBC,若1=42,BAC=78,则2的度数为()A42B50C60D68【解答】解:1=42,BAC=78,ABC=60,又ADBC,2=ABC=60,故选:C3(3分)(2018孝感)下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()ABCD【解答】解:A、此不等式组的解集为x2,不符合题意;B、此不等式组的解集为2x4,符合题意;C、此不等式组的解集为x4,不符合题意;D、此不等式组的无解,不符合题意;故选:B4(3分)(2018孝感)如图,在RtABC中,C=90,AB=10,AC=8,则sinA等于()ABCD【解答】解:在RtABC中,AB=10、AC=8,BC=6,sinA=,故选:A5(3分)(2018孝感)下列说法正确的是()A了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B甲乙两人跳绳各10次,其成绩的平均数相等,S甲2S乙2,则甲的成绩比乙稳定C三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D“任意画一个三角形,其内角和是360”这一事件是不可能事件【解答】解:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2S乙2,则乙的成绩比甲稳定,此选项错误;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,此选项错误;D、“任意画一个三角形,其内角和是360”这一事件是不可能事件,此选项正确;故选:D6(3分)(2018孝感)下列计算正确的是()Aa2a5=B(a+b)2=a2+b2C2+=2D(a3)2=a5【解答】解:A、a2a5=,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A7(3分)(2018孝感)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A52B48C40D20【解答】解:菱形ABCD中,BD=24,AC=10,OB=12,OA=5,在RtABO中,AB=13,菱形ABCD的周长=4AB=52,故选:A8(3分)(2018孝感)已知x+y=4,xy=,则式子(xy+)(x+y)的值是()A48B12C16D12【解答】解:(xy+)(x+y)=(x+y)(xy),当x+y=4,xy=时,原式=4=12,故选:D9(3分)(2018孝感)如图,在ABC中,B=90,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则PBQ的面积S随出发时间t的函数关系图象大致是()ABCD【解答】解:由题意可得:PB=3t,BQ=2t,则PBQ的面积S=PBBQ=(3t)2t=t2+3t,故PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下故选:C10(3分)(2018孝感)如图,ABC是等边三角形,ABD是等腰直角三角形,BAD=90,AEBD于点E,连CD分别交AE,AB于点F,G,过点A作AHCD交BD于点H则下列结论:ADC=15;AF=AG;AH=DF;AFGCBG;AF=(1)EF其中正确结论的个数为()A5B4C3D2【解答】解:ABC为等边三角形,ABD为等腰直角三角形,BAC=60、BAD=90、AC=AB=AD,ADB=ABD=45,CAD是等腰三角形,且顶角CAD=150,ADC=15,故正确;AEBD,即AED=90,DAE=45,AFG=ADC+DAE=60,FAG=45,AGF=75,由AFGAGF知AFAG,故错误;记AH与CD的交点为P,由AHCD且AFG=60知FAP=30,则BAH=ADC=15,在ADF和BAH中,ADFBAH(ASA),DF=AH,故正确;AFG=CBG=60,AGF=CGB,AFGCBG,故正确;在RtAPF中,设PF=x,则AF=2x、AP=x,设EF=a,ADFBAH,BH=AF=2x,ABE中,AEB=90、ABE=45,BE=AE=AF+EF=a+2x,EH=BEBH=a+2x2x=a,APF=AEH=90,FAP=HAE,PAFEAH,=,即=,整理,得:2x2=(1)ax,由x0得2x=(1)a,即AF=(1)EF,故正确;故选:B二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)11(3分)(2018孝感)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是1.496108千米【解答】解:149600000=1.496108,故答案为:1.49610812(3分)(2018孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为16cm2【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=rl+r2=26+22=16(cm2)故答案为:1613(3分)(2018孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(2,4),B(1,1),则方程ax2=bx+c的解是x1=2,x2=1【解答】解:抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(2,4),B(1,1),方程组的解为,即关于x的方程ax2bxc=0的解为x1=2,x2=1所以方程ax2=bx+c的解是x1=2,x2=1故答案为x1=2,x2=114(3分)(2018孝感)已知O的半径为10cm,AB,CD是O的两条弦,ABCD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm【解答】解:当弦AB和CD在圆心同侧时,如图,AB=16cm,CD=12cm,AE=8cm,CF=6cm,OA=OC=10cm,EO=6cm,OF=8cm,EF=OFOE=2cm;当弦AB和CD在圆心异侧时,如图,AB=16cm,CD=12cm,AF=8cm,CE=6cm,OA=OC=10cm,OF=6cm,OE=8cm,EF=OF+OE=14cmAB与CD之间的距离为14cm或2cm故答案为:2或1415(3分)(2018孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,记a1=1,a2=3,a3=6,a4=10,那么a4+a112a10+10的值是24【解答】解:由a1=1,a2=3,a3=6,a4=10,知an=1+2+3+n=,a10=55、a11=66,则a4+a112a10+10=10+66255+10=24,故答案为:2416(3分)(2018孝感)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CEx轴交双曲线于点E,连接BE,则BCE的面积为7【解答】解:过D作GHx轴,过A作AGGH,过B作BMHC于M,设D(x,),四边形ABCD是正方形,AD=CD=BC,ADC=DCB=90,易得AGDDHCCMB,AG=DH=x1,DG=BM,1=1x,x=2,D(2,3),CH=DG=BM=1=4,AG=DH=1x=1,点E的纵坐标为4,当y=4时,x=,E(,4),EH=2=,CE=CHHE=4=,SCEB=CEBM=4=7;故答案为:7三、用心做一做做,显显自己的能力!(本大题共8小题,满分72分)17(6分)(2018孝感)计算:(3)2+|4|+4cos30【解答】解:原式=9+4+24=13+22=1318(8分)(2018孝感)如图,B,E,C,F在一条直线上,已知ABDE,ACDF,BE=CF,连接AD求证:四边形ABED是平行四边形【解答】证明:ABDE,ACDF,B=DEF,ACB=FBE=CF,BE+CE=CF+CE,BC=EF在ABC和DEF中,ABCDEF(ASA),AB=DE又ABDE,四边形ABED是平行四边形19(9分)(2018孝感)在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗队飘,引我成长”知识竞赛,赛后机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成A,B,C,D,E五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)D类所对应的圆心角是72度,样本中成绩的中位数落在C类中,并补全条形统计图;(2)若A类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图法求恰好抽到1名男生和1名女生的概率【解答】解:(1)被调查的总人数为3030%=100人,则B类别人数为10040%=40人,所以D类别人数为100(4+40+30+6)=20人,则D类所对应的圆心角是360=72,中位数是第50、51个数据的平均数,而第50、51个数据均落在C类,所以中位数落在C类,补全条形图如下:(2)列表为:男1男2女1女2男1男2男1女1男1女2男1男2男1男2女1男2女2男2女1男1女1男2女1女2女1女2男1女2男2女2女1女2由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,恰好选到1名男生和1名女生的概率为=20(7分)(2018孝感)如图,ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:作BAC的平分线AM交BC于点D;作边AB的垂直平分线EF,EF与AM相交于点P;连接PB,PC请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是PA=PB=PC;(2)若ABC=70,求BPC的度数【解答】解:(1)如图,PA=PB=PC,理由是:AB=AC,AM平分BAC,AD是BC的垂直平分线,PB=PC,EP是AB的垂直平分线,PA=PB,PA=PB=PC;故答案为:PA=PB=PC;(2)AB=AC,ABC=ACB=70,BAC=180270=40,AM平分BAC,BAD=CAD=20,PA=PB=PC,ABP=BAP=ACP=20,BPC=ABP+BAC+ACP=20+40+20=8021(9分)(2018孝感)已知关于x的一元二次方程(x3)(x2)=p(p+1)(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22x1x2=3p2+1,求p的值【解答】解:(1)证明:原方程可变形为x25x+6p2p=0=(5)24(6p2p)=2524+4p2+4p=4p2+4p+1=(2p+1)20,无论p取何值此方程总有两个实数根;(2)原方程的两根为x1、x2,x1+x2=5,x1x2=6p2p又x12+x22x1x2=3p2+1,(x1+x2)23x1x2=3p2+1,523(6p2p)=3p2+1,2518+3p2+3p=3p2+1,3p=6,p=222(10分)(2018孝感)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元试销时A型净水器每台售价2500元,B型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70a80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值【解答】解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m200)元,根据题意得:=,解得:m=2000,经检验,m=2000是分式方程的解,m200=1800答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元(2)根据题意得:2000x+180(50x)98000,解得:x40W=(25002000)x+(21801800)(50x)ax=(120a)x+19000,当70a80时,120a0,W随x增大而增大,当x=40时,W取最大值,最大值为(120a)40+19000=2380040a,W的最大值是(2380040a)元23(10分)(2018孝感)如图,ABC中,AB=AC,以AB为直径的O交BC于点D,交AC于点E,过点D作DFAC于点F,交AB的延长线于点G(1)求证:DF是O的切线;(2)已知BD=2,CF=2,求AE和BG的长【解答】解:(1)连接OD,AD,AB为O的直径,ADB=90,即ADBC,AB=AC,BD=CD,又OA=OB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论