四川省宜宾市第四中学校2020届高三数学上学期期末考试试题 理_第1页
四川省宜宾市第四中学校2020届高三数学上学期期末考试试题 理_第2页
四川省宜宾市第四中学校2020届高三数学上学期期末考试试题 理_第3页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 四川省宜宾市第四中学校四川省宜宾市第四中学校 20202020 届高三数学上学期期末考试试题届高三数学上学期期末考试试题 理理 第第 i i 卷卷 选择题选择题 共共 6060 分 分 一 选择题一 选择题 本大题共本大题共 1212 小题 每小题小题 每小题 5 5 分 共分 共 6060 分分 在每个小题所给出的四个选项中 在每个小题所给出的四个选项中 只只 有一项是符合题目要求的 把正确选项的代号填在答题卡的指定位置有一项是符合题目要求的 把正确选项的代号填在答题卡的指定位置 1 已知全集 则为 2 0 1 2 3 2 uabx xx z ab a b c d 1 3 0 2 0 1 3 2 2 为虚数单位 若为实数 则实数 iar ai zi ai a a 1b c 1d 2 1 2 3 甲 乙两名篮球运动员在 10 场比赛中得分的茎叶图如图所示 则 是 甲运 9x 动员得分平均数大于乙运动员得分平均数 的 a 充分不必要条件 b 必要不充分条件 c 充分必要条件 d 既不充分也不必要条件 4 已知等比数列中 公比 则等于 n a 1 32a 1 2 q 6 a a b c d 1 1 2 1 1 2 5 函数的图象大致是 2 3 ln f xxx a b c d 6 某几何体的三视图如图 虚线刻画的小正方形边长为 1 所示 则这个几何体的体积为 2 a b 4 9 3 28 c d 123 8 7 在边长为 的正方形中 为的中点 点在线段 1abcdmbceab 上运动 则的取值范围是 ec em a b c d 1 2 2 3 0 2 1 3 2 2 0 1 8 设g x 的图象是由函数f x cos2x的图象向左平移个单位得到的 则g 等于 3 6 a 1b c 0d 1 1 2 9 若函数y f x 满足 集合a f n n n 中至少有三个不同的数成等差数列 则称 函数f x 是 等差源函数 则下列四个函数中 等差源函数 的个数是 y 2x 1 y log2x y 2x 1 y sin 44 x a 1b 2c 3d 4 10 在中 则在方向上的 abc abacabac 4ab 3ac bc ca 投影是 a 4b 3c 4d 3 11 已知 a 0 x y 满足约束条件 若 z 2x y 的最小值为 1 则 1 3 3 x xy ya x a a b c 1d 2 12 已知双曲线的左 右两个焦点分别为 为其左右顶 22 22 1 0 0 xy ab ab 12 ff a b 点 以线段为直径的圆与双曲线的渐近线在第一象限的交点为 且 则 12 ff m30mab 双曲线的离心率为 3 a b c d 21 2 21 3 19 3 19 2 第第 卷 非选择题共卷 非选择题共 9090 分 分 二 填空题二 填空题 本大题共本大题共 4 4 小题 每小题小题 每小题 5 5 分 满分分 满分 2020 分 分 13 已知向量 若 则 1 1a 3 bm aab a m 14 已知函数 则的值域为 2 2 14cos4sin 43 f xxx x f x 15 已知是定义在上的奇函数 对于任意且 都有 f x r 12 0 x x 12 xx 成立 且 则不等式的解集为 12 12 0 f xf x xx 30f 0f x 16 在三棱锥中 平面平面 是边长为的等边三角形 其中 p abc pababc abc2 3 则该三棱锥外接球的表面积为 pa pb 7 三 解答题 共三 解答题 共 7070 分 解答应写出文分 解答应写出文字说明 证明过程或演算步骤 第字说明 证明过程或演算步骤 第 1717 2121 题为必题为必 考题 每个试题考生都必须作答 第考题 每个试题考生都必须作答 第 2222 2323 题为选考题 考生根据要求作答题为选考题 考生根据要求作答 17 12 分 在某校举行的航天知识竞赛中 参与竞赛的文科生与理科生人数之比为 1 3 且成绩分布在 分数在以上 含 的同学获奖 按文理科用分层抽样的方 40 100 8080 法抽取人的成绩作为样本 得到成绩的频率分布直方图 见下图 200 i 在答题卡上填写下面的列联表 能否有超过的把握认为 获奖与学生的文 22 00 95 理科有关 文科生理科生合计 4 获奖5 不获奖 合计200 ii 将上述调査所得的频率视为概率 现从该校参与竞赛的学生中 任意抽取名学生 3 记 获奖 学生人数为 求的分布列及数学期望 xx 附表及公式 其中 2 2 n adbc k abcdacbd nabcd 18 12 分 在锐角中 角的对边分别为 abc a b c a b c sinsin tan coscos bc a bc i 求角的大小 a ii 若 求的取值范围 3a 22 bc 19 12 分 如图 在三棱柱中 平面 111 abc abc 11 45aab acbc 平面 为中点 11 bbc c 11 aab b e1 cc i 求证 1 acbb ii 若直线与平面所成角 1 2 2 aaab 11 ac 11 abb a 为 求平面与平面所成锐二面角的余弦值 45 11 ab e abc 20 12 分 已知椭圆的两个焦点分别为 长轴长为 c 12 1 0 1 0ff 2 3 求椭圆的标准方程及离心率 c 5 过点的直线 与椭圆交于 两点 若点满足 0 1 lca bm0mambmo 求证 由点 构成的曲线关于直线对称 ml 1 3 y 21 12 分 已知函数 2 ln 1 2 a f xxxax ar 1 当时 求函数的极值 0a f x 2 若函数有两个零点 求的取值范围 并证明 f x 12 x x a12 2xx 二 选考题 共 二 选考题 共 1010 分 请考生在第分 请考生在第 2222 2323 题中任题中任选一题作答选一题作答 如果多做 则按所做的如果多做 则按所做的 第一题计分第一题计分 22 10 分 选修 4 4 坐标系与参数方程 在直角坐标系中 圆 c 的参数方程为 其中为参数 以坐标原点 xoy 1 cos sin x y a 为极点 轴正半轴为极轴建立极坐标系 ox 1 求圆的极坐标方程 c 2 为圆上一点 且点的极坐标为 射线绕点逆时针 bcb 000 2 6 obo 旋转 得射线 其中也在圆上 求的最大值 3 oaac oaob 23 10 分 已知函数 12f xxxm mr 1 当时 解不等式 3m 2f x 2 若存在满足 求实数的取值范围 0 x 00 13xf x m 6 2019 20202019 2020 学年秋四川省宜宾市第四中学高三期末考试学年秋四川省宜宾市第四中学高三期末考试 理科数学试题参考答案理科数学试题参考答案 1 b2 c3 a4 c5 a6 d7 c8 d9 c10 d 11 b12 b 13 14 15 16 3 4 5 3 03 65 4 17 详解 i 文科生理科生合计 获奖 53540 不获奖 45115160 合计 50150200 所以有超过的把握认为 获 2 2005 11535 4525 4 1673 841 50 150 40 1606 k 0 95 0 奖与学生的文理科有关 ii 由表中数据可知 将频率视为概率 从该校参赛学生中任意抽取一人 抽到获奖同 学的概率为 的所有可能的取值为 且 1 5x 0 1 2 3 1 3 5 xb 所以的分布列如下 5 3 11 1 55 kk k p xkc 0 1 2 3k x x0123 p 64 125 48 125 12 125 1 125 13 3 55 e x 18 1 由 sina cosa sinbsinc cosbcosc 7 得 sinacosb sinacosc cosasinb cosasinc 即 sin a b sin c a 则 a b c a 即 2a c b 即 a 3 2 当 a 时 b c c b 由题意得 3 2 3 2 3 2 2 0 32 b b b 由 2 得 b 2sinb c 2sinc 6 2 abc sinasinbsinc b2 c2 4 sin2b sin2c 4 2sin 2b 6 b sin 2b 1 1 2sin 2b 2 6 2 1 26 6 5 b2 c2 6 故的取值范围是 22 bc 5 6 19 1 过点做交于 因为面 c1 cobb 1 bb o1111 bbc caab b 面 11111 bbc caab b b b 面 所以 故 11 coaabb 面 1 cobb 又因为 所以 故 acbc ococ rt aocrt boc oaob 因为 所以 又因为 所以面 11 45b a aoba 1 aobb 1 bbco 1 bb aoc 故 1 bbac 2 以为坐标原点 所在直线为轴 建立空间直角坐标 o oa ob oc x y zoxyz 8 11 1 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 1 1abcabe 设面的法向量为 则 令 11 ab e 111 nx y z 1 1 0 0 n ae n b e 111 1 0 0 xyz z 1 1x 得 1 1 0n 设面的法向量为 则 令 abc 222 mxyz 0 0 m ab m ac 22 22 0 0 xy xz 2 1x 得 1 1 1m 6 cos 3 mn m n m n 面与面所成锐二面角的余弦值为 11 ab e abc 6 3 20 由已知 得 所以 3 1ac 13 33 c e a 又 所以 222 abc 2b 所以椭圆的标准方程为 离心率 c 22 1 32 xy 3 3 e 设 11 a x y 22 b xy mm m xy 直线 与轴垂直时 点的坐标分别为 lx a b 0 2 0 2 因为 0 2 mm maxy 0 2 mm mbxy 0 0 mm moxy 所以 3 30 mm mambmcxy uuu ruuu ruuu rr 9 所以 即点与原点重合 0 0 mm xy m 当直线 与轴不垂直时 设直线 的方程为 lxl 1ykx 由 得 22 1 32 1 xy ykx 22 32630kxkx 222 3612 3272240kkk 所以 12 2 6 32 k xx k 则 12 2 4 0 32 yy k 因为 11 mm maxxyy 22 mm mbxxyy mm moxy 所以 1212 03 030 mm mambmoxxxyyy uuu ruuu ruuu rr 所以 12 3 m xxx 12 3 m yyy 2 2 32 m k x k 2 4 3 0 32 m y k 消去得 k 22 23200 mmmm xyyy 综上 点构成的曲线的方程为 ml 22 2320 xyy 对于曲线的任意一点 它关于直线的对称点为 l m x y 1 3 y 2 3 mxy 把的坐标代入曲线的方程的左端 2 3 mxy l 2 22222 2244 23224322320 3333 xyyxyyyxyy 所以点也在曲线上 所以由点构成的曲线关于直线对称 m lml 1 3 y 21 1 由得 2 ln1 2 a f xxxax 111 1 xax fxaxa xx 当时 若 若 0a 10ax 01 0 xfx 1 xfx 0 10 故当时 在处取得的极大值 函数无极小值 0a f x 1x 11 2 a f f x 2 当时 由 1 知在处取得极大值 且当趋向于时 0a f x 1x 11 2 a f x0 趋向于负无穷大 又有两个零点 则 f x 2ln220 ff x 110 2 a f 解得 2a 当时 若 若 若 10a 01 0 xfx 1 1 0 xfx a 1 0 xfx a 则在处取得极大值 在处取得极小值 由于 则 f x 1x 1 x a 10 2 a f x 仅有一个零点 f x 当时 则仅有一个零点 1a 2 1 0 x fx x f x 当时 若 若 若 1a 1 0 0 xfx a 1 1 0 xfx a 1 0 xfx 则在处取得极小值 在处取得极大值 由于 f x 1x 1 x a 则仅有一个零点 11 ln10 2 fa aa f x 综上 有两个零点时 的取值范围是 f x a 2 两零点分别在区间和内 不妨设 0 1 1 12 01 1xx 欲证 需证明 12 2xx 21 2xx 又由 1 知在单调递减 故只需证明即可 f x 1 12 20fxf x 2 2 1111111 2ln 2212ln 212 22 aa fxxxaxxxax 又 2 1111 ln10 2 a f xxxax 所以 1111 2ln 2ln22fxxxx 11 令 则 ln 2ln22 01 h xxxxx 2 2111 20 22 x h x xxx x 则在上单调递减 所以 即 h x 0 1 10h xh 1 20fx 所以 12 2xx 22 解 1 1 cos sin x y 2222 1 120 xyxyx 由可得圆的极坐标方程 222 cos xyx

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论