


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡山二中 数学教案 高一 下 必修四 三角函数 1 4 1 正弦 余弦函数的图象 教学目的 知识目标 1 利用单位圆中的三角函数线作出的图象 明确图象的形状 Rxxy sin 2 根据关系 作出的图象 2 sin cos xxRxxy cos 3 用 五点法 作出正弦函数 余弦函数的简图 并利用图象解决一些有关问题 能力目标 1 理解并掌握用单位圆作正弦函数 余弦函数的图象的方法 2 理解并掌握用 五点法 作正弦函数 余弦函数的图象的方法 德育目标 通过作正弦函数和余弦函数图象 培养学生认真负责 一丝不苟的学习和工作精神 教学重点 用单位圆中的正弦线作正弦函数的图象 教学难点 作余弦函数的图象 教学过程 一 复习引入 1 弧度定义 长度等于半径长的弧所对的圆心角称为 1 弧度的角 2 正 余弦函数定义 设是一个任意角 在的终边上任取 异于原点的 一点 P x y P 与原点的距离r 0 22 22 yxyxr 则比值叫做的正弦 记作 r y r y sin 比值叫做的余弦 记作 r x r x cos 3 3 正弦线 余弦线 设任意角 的终边与单位圆相交于点 P x y 过 P 作 x 轴的垂线 垂足 为 M 则有 MP r y sinOM r x cos 向线段 MP 叫做角 的正弦线 有向线段 OM 叫做角 的余弦线 二 讲解新课 1 用单位圆中的正弦线 余弦线作正弦函数 余弦函数的图象 几何法 为了作三角函数的图象 三角函数的自变量要用弧度制来度量 使自变量与函数值都为实数 在一 般情况下 两个坐标轴上所取的单位长度应该相同 否则所作曲线的形状各不相同 从而影响初学 者对曲线形状的正确认识 1 函数 y sinx 的图象 第一步 在直角坐标系的 x 轴上任取一点 以为圆心作单位圆 从这个圆与 x 轴的交点 1 O 1 O A 起把圆分成 n 这里 n 12 等份 把 x 轴上从 0 到 2 这一段分成 n 这里 n 12 等份 预备 取自 变量 x 值 弧度制下角与实数的对应 第二步 在单位圆中画出对应于角 2 的正弦线正弦线 等价于 列表 6 0 3 2 把角 x 的正弦线向右平行移动 使得正弦线的起点与 x 轴上相应的点 x 重合 则正弦线的终点就 是正弦函数图象上的点 等价于 描点 r y x P 湖南省衡山二中 数学教案 高一 下 必修四 三角函数 第三步 连线 用光滑曲线把这些正弦线的终点连结起来 就得到正弦函数 y sinx x 0 2 的图象 根据终边相同的同名三角函数值相等 把上述图象沿着 x 轴向右和向左连续地平行移动 每次 移动的距离为 2 就得到 y sinx x R 的图象 把角 x的正弦线平行移动 使得正弦线的起点与 x 轴上相应的点 x 重合 则正弦线的 xR 终点的轨迹就是正弦函数 y sinx 的图象 2 2 余弦函数 余弦函数 y cosxy cosx 的图象的图象 探究探究 1 1 你能根据诱导公式 以正弦函数图象为基础 通过适当的图形变换得到余弦函数的图象 你能根据诱导公式 以正弦函数图象为基础 通过适当的图形变换得到余弦函数的图象 根据诱导公式 可以把正弦函数 y sinx 的图象向左平移单位即得余弦函数cossin 2 xx 2 y cosx 的图象 课件第三页 课件第三页 平移曲线平移曲线 正弦函数正弦函数 y sinxy sinx 的图象和余弦函数的图象和余弦函数 y cosxy cosx 的图象分别叫做正弦曲线和余弦曲线 的图象分别叫做正弦曲线和余弦曲线 思考 在作正弦函数的图象时 应抓住哪些关键点 思考 在作正弦函数的图象时 应抓住哪些关键点 2 用五点法作正弦函数和余弦函数的简图 描点法 正弦函数 y sinx x 0 2 的图象中 五个关键点关键点是 0 0 1 0 1 2 2 3 2 0 余弦函数 y cosx x 0 2 的五个点关键是哪几个 0 1 0 1 0 2 1 2 2 3 只要这五个点描出后 图象的形状就基本确定了 因此在精确度不太高时 常采用五点法作正 弦函数和余弦函数的简图 要求熟练掌握 优点是方便 缺点是精确度不高 熟练后尚可以 y cosx y sinx 2 3 4 5 6 2 3 4 5 6 6 5 4 3 2 6 5 4 3 2 1 1 y x 1 1 o x y 湖南省衡山二中 数学教案 高一 下 必修四 三角函数 3 3 讲解范例 讲解范例 例例 1 1 作下列函数的简图 1 y 1 sinx x 0 2 2 y COSx 探究 2 如何利用 y sinx 0 的图象 通过图形变换 平移 翻转等 来得到 1 y 1 sinx 0 的图象 2 y sin x 3 的图象 小结 函数值加减 图像上下移动 自变量加减 图像左右移动 探究 如何利用 y cos x 0 的图象 通过图形变换 平移 翻转等 来得到 y cosx 0 的图象 小结 这两个图像关于 X 轴对称 探究 如何利用 y cos x 0 的图象 通过图形变换 平移 翻转等 来得到 y 2 cosx 0 的图象 小结 先作 y cos x 图象关于 x 轴对称的图形 得到 y cosx 的图象 再将 y cosx 的图象向上平移 2 个单位 得到 y 2 cosx 的图象 探究 不用作图 你能判断函数 y sin x 3 2 和 y cosx 的图象有何关系吗 请在同一坐标系中画 出它们的简图 以验证你的猜想 小结 sin x 3 2 sin x 3 2 2 sin x 2 cosx 这两个函数相等 图象重合 例例 2 2 分别利用函数的图象和三角函数线两种方法 求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025公司厂级员工安全培训考试试题附参考答案【基础题】
- 2024-2025公司三级安全培训考试试题及答案黄金题型
- 中班社会交往能力提升计划
- 2024湖北十堰融资担保集团有限公司招聘5人笔试参考题库附带答案详解
- 农业人力资源部人才引进与工作计划
- 部编版小学语文一年级下册课外拓展活动计划
- 2025年xx银行分行产品创新工作计划
- 2025年-河南省建筑安全员知识题库及答案
- 电动健身器械的发展趋势-全面剖析
- 建筑节能材料研发与应用-全面剖析
- 2025年健康管理师考试信息整合试题及答案
- 矮小症的护理措施
- 2024年襄阳市樊城区城市更新投资发展有限公司招聘笔试真题
- 2025年中国酸奶饮品行业市场深度评估及投资战略规划报告
- 新增值税法的变化要点与实务要领
- 2024年电子商务物流挑战试题及答案
- 2025年高考英语二轮复习专题05 阅读七选五(练习)(解析版)
- 门式架搭设方案
- 铁路网络安全知识培训
- 煤矿事故案例警示
- 2025年南通师范高等专科学校高职单招(数学)历年真题考点含答案解析
评论
0/150
提交评论