




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 21 课题课题 6 16 1 平方根平方根 第第 1 1 课时课时 教学目标 1 通过实际生活中的例子理解算术平方根的概念 2 会求非负数的算术平方根并会用符号表示 教学重点 算术平方根的概念和求法 教学难点 算术平方根的求法 集体智慧集体智慧 活动方案 个性调整个性调整 情境引入 情境引入 问题 学校要举行美术作品比赛 小欧很高兴 他 想裁出一块面积为的正方形画布 画上自己 2 25dm 得意的作品参加比赛 这块正方形画布的边长应取 多少 活动一活动一 认识算术平方根认识算术平方根 1 探索 学生能根据已有的知识即正方形的面积公式 边长的平方等于面积 求出正方形画布的边长为 dm5 接下来教师可以再深入地引导此问题 如果正方形的面积分别是 1 9 16 36 那么正方形的边长分别是多少 25 4 呢 学生会求出边长分别是 1 3 4 6 接下 5 2 来教师可以引导性地提问 上面的问题它们有共同 点吗 它们的本质是什么呢 这个问题学生可能总 结不出来 教师需加以引导 上面的问题 实际上是已知一个正数的平方 求这个正数的问题 2 归纳 归纳 算术平方根的概念 算术平方根的概念 一般地 如果一个正数一般地 如果一个正数 x x 的平方等于的平方等于 a a 即 即 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 25 x x2 2 a a 那么这个正数那么这个正数 x x 叫做叫做 a a 的算术平方根 的算术平方根 算术平方根的表示方法 算术平方根的表示方法 a a 的算术平方根记为的算术平方根记为 读作 读作 根号根号 a a 或或a 二次很号二次很号 a a a a 叫做被开方数 叫做被开方数 活动二活动二 求非负数的算术平方根求非负数的算术平方根 例 1 求下列各数的算术平方根 100 64 49 9 7 10001 0 0 解 因为所以的算术平方根是 100102 10010 即 10100 因为 所以的算术平方根是 64 49 8 7 2 64 49 8 7 即 8 7 64 49 因为 所以的算术平方 9 16 3 4 9 16 9 7 1 2 9 7 1 根是 即 3 4 3 4 9 16 9 7 1 因为 所以的算术平方根0001 0 01 0 2 0001 0 是 即 01 0 01 0 0001 0 因为 所以的算术平方根是 002 00 即 00 注 注 根据算术平方根的定义解题 明确平方与开根据算术平方根的定义解题 明确平方与开 平方互为逆运算 平方互为逆运算 求带分数的算术平方根 需要先把带分数化求带分数的算术平方根 需要先把带分数化 成假分数 然后根据定义去求解 成假分数 然后根据定义去求解 0 0 的算术平方根是的算术平方根是 0 0 由此例题教师可以引导学生思考如下问题 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 26 你能求出 1 36 100 的算术平方根吗 任 意一个负数有算术平方根吗 归纳 一个正数的算术平方根有归纳 一个正数的算术平方根有 1 1 个 个 0 0 的算术平方根是的算术平方根是 0 0 负数没有算术平方根负数没有算术平方根 即 只有非负数有算术平方根 如果即 只有非负数有算术平方根 如果有意义 有意义 ax 那么那么 0 0 xa 注 且这一点对于初学者不太容易0 a0 a 理解 教师不要强求 可以在以后的教学中慢慢渗 透 例 2 求下列各式的值 1 2 3 4 4 81 49 2 11 2 6 分析 此题本质还是求几个非负数的算术平方根 解 1 24 2 9 7 81 49 3 1111 11 22 4 662 例 3 求下列各数的算术平方根 2 3 3 4 2 10 6 10 1 解 1 因为 所以 932 3932 因为 所以 23 8644 86443 因为 22 10100 10 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 27 所以 10100 10 2 因为 所以 63 10 1 10 1 36 10 1 10 1 根据学生的学习能力和理解能力可进行如下总结 根据学生的学习能力和理解能力可进行如下总结 1 1 由 由 可得 可得332 662 0 2 aaa 2 2 由 由 可得 可得11 11 2 10 10 2 0 2 aaa 教师需强调时对两种情况都成立 0 a 课堂小结课堂小结 1 这节课学习了什么呢 2 算术平方根的具体意义是怎么样的 3 怎样求一个正数的算术平方根 课堂检测 1 算术平方根等于本身的数有 2 求下列各式的值 1 25 9 2 5 2 7 3 求下列各数的算术平方根 0025 0 121 2 4 2 2 1 16 9 1 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 28 4 已知求的值 011 baba2 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 29 课题 6 16 1 平方根平方根 第第 2 2 课时课时 教学目标教学目标 1 1 了解无限不循环小数的特点 会用算术平方根的知识解决实际问题 2 通过探究的大小 培养学生的估算意识 了解两个方向无限逼近的数2 学思想 教学重点教学重点 认识无限不循环小数的特点 会估算一些数的算术平方根 教学难点教学难点 认识无限不循环小数的特点 会估算一些数的算术平方根 集体智慧集体智慧 活动方案 个性调整个性调整 活动一活动一 讨论讨论的大小的大小2 怎样用两个面积为 1 的小正方形拼成一个面积 为 2 的大正方形 如图 把两个小正方形沿对角线剪开 将所得 的 4 个直角三角形拼在一起 就得到一个面积为 2 的大正方形 你知道这个大正方形的边长是多少吗 设大正方形的边长为 则 由算术平方根x2 2 x 的意义可知 2 x 所以大正方形的边长为 2 由上面的实验我们认识了 它的大小是多少2 呢 它所表示的数有什么特征呢 下面我们讨论 的大小 2 因为 所以 42 11 22 2 12 2 2122 因为 所以 96 1 4 1 2 25 2 5 1 2 4 12 5 1 因为 所以9881 1 41 1 2 0164 2 42 1 2 41 1 242 1 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 30 因为 所999396 1 414 1 2 002225 2 415 1 2 以 414 1 2415 1 如此进行下去 我们发现它的小数位数无限 且小数部分不循环 像这样的数我们成为无限不循 环小数 241421356 1 注 这种估算体现了两个方向向中间无限逼近 的数学思想 学生第一次接触 不好理解 教师在 讲解时速度要放慢 可能需要讲两遍 2 是个无限不循环小数 但是很抽41421356 1 象 没有办法全部表示出来它的大小 类似这样的 数还有很多 比如等 圆周率 也是一7 5 3 个无限不循环小数 活动二活动二 探索规律探索规律 大多数计算器都有 键 用它可以求出一 个有理数的算术平方根或近似值 例 1 用计算器求下列各式的值 精确到3136 1 2 2 001 0 解 1 依次按键 显示 56 所以 3136 563136 2 依次按键2 显示 这是414213562 1 一个近似值 所以 414 1 2 注 不同品牌的计算器 按键的顺序可能有所不同 例 2用计算器计算 303 0 300 的近似值 写出你发现的规律 你能利30000 用发现的规律写出的值吗 30 学生通过计算器可求出 1 的答案 依次是 从运算结果可以250 1 79 25 91 7 5 2 791 0 25 0 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 31 发现 被开方数扩大或缩小 100 倍时 它的算术平 方根就扩大或缩小 10 倍 由可得732 1 3 2 17330000 32 17300 1732 0 03 0 由的值不能求出的值 因为规律是被开方330 数扩大或缩小 100 倍时 它的算术平方根才扩大或 缩小 10 倍 而 3 到 30 扩大的是 10 倍 所以不能由 此规律求出 此题学生可独立完成 活动三活动三 实际应用 实际应用 例 1 小丽想用一块面积为的正方形纸片 2 400cm 沿着边的方向裁出一块面积为的长方形纸片 2 300cm 使它的长与宽之比为 不知道能否裁出来 正32 在发愁 小明见了说 别发愁 一定能用一块面 积大的纸片裁出一块面积小的纸片 你同意小明的 说法吗 小丽能否用这块纸片裁出符合要求的纸片 吗 分析 学生一般认为一定能用一块面积大的纸 片裁出一块面积小的纸片 通过计算和讲解纠正这 种错误的认识 解 设长方形纸片的长为 宽为 xcm3xcm2 根据边长与面积的关系可得 30023 xx 3006 2 x50 2 x50 x 长方形纸片的长为 因为cm503 所以 从而 504950750321 即长方形纸片的长应该大于 而已知正方cm21 形纸片的边长只有 这样长方形纸片的长将大cm20 于正方形纸片的边长 答 不能同意小明的说法 小丽不能用这块正 方形纸片裁出符合要求的长方形纸片 课堂小结 课堂小结 1 被开方数增大或缩小时 其相应的算术平方根也 相应地增大或缩小 因此我们可以利用夹值的方法 来求出算术平方根的近似值 2 利用计算器可以求出任意正数的算术平方根的近 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 32 似值 3 被开方数扩大 或缩小 与它的算术平方根扩大 或缩小 的规律是怎样的呢 4 怎样的数是无限不循环小数 课堂检测课堂检测 1 估计大小 1 与 2 与14012 2 15 5 0 2 已知 求 414 1 2 02 0 0002 0 的值 20020000 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 33 课题课题 6 16 1 平方根 第平方根 第 3 3 课时 课时 教学目标教学目标 1 1 了解平方根的概念 会用根号表示正数的平方根 2 2 了解开平方与平方互为逆运算 会用平方运算求某些非负数的平方根 教学重点教学重点 了解开方和乘方互为逆运算 弄懂平方根与算术平方根的区别和联系 教教学学难难点点 平方根与算术平方根的区别和联系 集体智慧集体智慧 活动方案 个性调整个性调整 活动一活动一 思考归纳 引入概念思考归纳 引入概念 如果一个数的平方等于 9 这个数是多少 学生思考并讨论 使学生明白这样的数有两个 它们是 3 和 3 受前面知识的影响学生可能不易想到 3 这个数 这时可提醒学生 这里的这个数可以是负数 注意 3 2 9 中括号的作用 又如 x2 则 x 等于多少呢 25 4 使学生完成课本 165 页的填表练习 填表 2 x1163649 25 4 x 给出平方根的概念 如果一个数的平方等于 那么这个数平方根的概念 如果一个数的平方等于 那么这个数 就叫做 的平方根 即 如果就叫做 的平方根 即 如果 x x2 2 a a 那么 那么 x x 叫做 的平方根 叫做 的平方根 求一个数的平方根的运算 叫做开平方 求一个数的平方根的运算 叫做开平方 例如 3 的平方等于 9 9 的平方根是 3 所以平方与开平 方互为逆运算 观察 课本 45 页中的图 6 1 2 图 6 1 2 中的两个图描述了平方与开平方互为逆运算的运 算过程 揭示了开平方运算的本质 让学生体验平方和开平方的互逆关系 并根据这个关系说出 1 4 9 的平方根 注意 这阶段主要是让学生建立平方根的概念 先不引入平 方根的符号 给出的数是完全平方数 例 1 课本 45 页的例 4 求下列各数的平方根 1 100 2 3 0 25 建议 教师要规范书写格式 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 34 活动二活动二 讨论归纳 深化概念讨论归纳 深化概念 按照平方根的概念 请同学们思考并讨论下列问题 正数的平方根有什么特点 0 的平方根是多少 负数有平方根吗 建议 建议 可引导学生通过观察 x2 a 中的 a 和 x 的取值范围和取 值个数得出 注 注 学生刚开始接触平方根时 有两点可能不太习惯 一个是 正数有两个平方根 即正数进行开平方运算有两个结果 这与学 生过去遇到的运算结果惟一的情况有所不同 另一个是负数没有 平方根 即负数不能进行开平方运算 这种某数不能进行某种运 算的情况在有理数的加 减 乘 除 乘方五种运算中一般不会 遇到 0 作除数的情况除外 教学时 可以通过较多实例说明这 两点 并在本节以后的教学中继续强化这两点 引入符号 引入符号 正数 a 的算术平方根可用表示 正数 a 的负的平方 根可用表示 例如 a 思考思考 表示什么意思 这里的 x 可取什么样的数呢 而对于 又该怎样理解呢 这里的 x 又可取什么样的数呢 活动三活动三 应用知识应用知识 例 2下列各式是否有意义 为什么 1 2 3 4 3 3 2 3 2 10 1 例 3 下列各数有平方根吗 如果有 求出它的平方根 如果没有 说明理由 64 0 4 2 10 2 如果有要用平方根的符号来表示 例 4 求下列各式的值 1 2 3 3681 0 9 49 建议 建议 要让学生明白各式所表示的意义 根据平方关系和平方根 概念的格式书写解题格式 平方根和算术平方根的概念是本章重 点内容 两者既有区别又有联系 区别在于正数的平方根有两个 而它的算术平方根只有一个 联系在于正数的负平方根是它的算 术平方根的相反数 根据它的算术平方根可以立即写出它的负平 方根 因此我们可以利用算术平方根来研究平方根 小结 什么叫做一个数的平方根 正数 0 负数的平方根有什么规律 怎样求出一个数的平方根 数 的平方根怎样表示 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 35 课堂反馈课堂反馈 1 判断下列说法是否正确 1 0 的平方根是 0 2 1 的平方根是 1 3 1 的平方根是 1 4 0 01 的平方根是 0 1 的一个平方根 2 填表 x 8 8 5 3 5 3 2 x 160 36 3 计算下列各式的值 1 2 3 949 0 81 64 4 平方根概念的起源与几何中的正方形有关 如果一个正方形的面 积为 A 那么这个正方形的边长是多少 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 36 课题课题 6 26 2 立方根立方根 教学目标教学目标 1 1 了解立方根的概念和表示方法 2 2 会求一个数的立方根 3 3 通过探讨一个数的立方根与它的相反数的立方根的关系 可以将求负数的 立方根转化为求正数的立方根的问题 培养学生的转化思想 教学重点教学重点 立方根的概念和求法 教学难点教学难点 立方根的求法 集体智慧集体智慧 活动方案 个性调整个性调整 情景引入情景引入 要制作一种容积为的正方体形状的包装箱 这种包装箱 3 27m 的边长应该是多少 活动一活动一 探索归纳探索归纳 认识立方根认识立方根 1 探索 设这种包装箱的边长为 则 xm27 3 x 这就是要求一个数 使它的立方等于 27 因为 所以 即这种包装箱的边长应为 2733 3 xm3 2 归纳 立方根的概念 一般地 如果一个数的立方等于 那么这个数叫a 做的立方根或三次方根 a 立方根的表示方法 如果 那么叫做的立方根 记作ax 3 xa 读作三次根号 3 ax 3 aa 其中是被开方数 3 是根指数 中的根指数 3 不能省略 a 3 a 开立方的概念 求一个数的立方根的运算 叫做开立方 开立方与立方互为逆运算 可以根据这种关系求一个数的立方根 3 探索立方根的特点 根据立方根的意义填空 并思考正数 0 负数的立方根各有什么 特点 1 因为 所以 8 的立方根是 823 2 因为 所以的立方根是 125 0 3 125 0 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 37 3 因为 所以 0 的立方根是 0 3 4 因为 所以 的立方根是 8 3 8 5 因为 所以的立方根是 27 8 3 27 8 学生独立完成后 教师要引导学生从正 负数和零三方面去归纳 总结立方根的特点 归纳 正数的立方根是正数 归纳 正数的立方根是正数 负数的立方根是负数 负数的立方根是负数 0 0 的立方根是的立方根是 0 0 4 探究互为相反数的两个数的立方根的关系 填空 因为 所以 3 8 3 8 3 8 3 8 因为 所以 3 27 3 27 3 27 3 27 由上面两个例子可归纳出 一般地 33 aa 注 这个关系对于正数 负数 零都成立 求负数的立方根 时 可以先求出这个负数的绝对值的立方根 然后再确它的相反 数 活动二活动二 应用新知解题应用新知解题 例 1 求下列各式的值 1 2 3 3 64 3 125 3 64 27 分析 根据立方根的意义求解 解 1 2 3 464 3 5125 3 4 3 64 27 3 例 2 求下列各式中的值 x 1 2 3 008 0 3 x 8 3 3 3 x 8 1 3 x 分析 此题的本质还是求立方根 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 38 解 1 008 0 3 x 3 008 0 x2 0 x 2 8 3 3 3 x 8 27 3 x 2 3 x 3 8 1 3 x21 x3 x 例 3 用计算器计算 的 33 10 36 10 39 10 33 10 36 10 值 你发现了什么 并总结出来 利用你前面发现的规律填空 已知 则 6216 3 3 000216 0 3 216000 解 1010 33 236 1010 339 1010 133 1010 236 1010 由此发现 一个数扩大或缩小 1000 倍时 它的立方根扩大或 缩小 10 倍 3 000216 0 06 0 60216000 3 课堂小结课堂小结 1 立方根和开立方的定义 2 正数 0 负数的立方根的特征 3 立方根与平方根的异同 课堂反馈课堂反馈 1 立方根等于本身的数是 2 如果则 11 3 aa a 3 的立方根是 64 的立方根是 3 4 4 已知的立方根是 4 求的算术平方根 163 x42 x 5 已知 求的值 43 x 3 3 10 x 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 39 课题课题 6 36 3 实数 第实数 第 1 1 课时 课时 教学目标教学目标 1 1 了解无理数和实数的概念以及实数的分类 2 2 知道实数与数轴上的点具有一一对应的关系 教学重点教学重点 了解无理数和实数的概念 教学难点教学难点 对无理数的认识 6 比较大小 1 3 2 1 3 1 2 2 3 3 2 3 4 3 3 3 3 7 集体智慧集体智慧 活动方案 个性调整个性调整 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 40 活动一活动一 引入无理数引入无理数 利用计算器把下列有理数写成小数的形式 9 5 11 9 8 47 5 3 3 它们有什么特征 发现上面的有理数都可以写成有限小数或无限循环小数的形式 即 5 0 9 5 18 0 11 9 875 5 8 47 6 0 5 3 0 33 归纳 任何一个有理数 整数或分数 都可以写成有限小数或者无归纳 任何一个有理数 整数或分数 都可以写成有限小数或者无 限循环小数的形式限循环小数的形式 反过来 任何有限小数或者无限循环小数也都是有理数 通过前面的学习 我们知道有很多数的平方根或立方根都是无限不 循环小数 把无限不循环小数叫做无理数把无限不循环小数叫做无理数 比如等都是无理数 也是无理数 3 3 5 2 14159265 3 活动二活动二 认识实数认识实数 1 实数的概念 有理数和无理数统称为实数 2 实数的分类 按照定义分类如下 实数 数 无理数 无限不循环小 小数 有限小数或无限循环 分数 整数 有理数 按照正负分类如下 实数 负无理数 负有理数 负实数 零 负无理数 正有理数 正实数 3 实数与数轴上点的关系 我们知道每个有理数都可以用数轴上的点来表示 无理数是否 也可以用数轴上的点表示出来吗 活动 1 直径为 1 个单位长度的圆其周长为 把这个圆放在数轴 上 圆从原点沿数轴向右滚动一周 圆上的一点由原点到达另一个 点 这个点的坐标就是 由此我们把无理数 用数轴上的点表 示了出来 活动 2 在数轴上 以一个单位长度为边长画一个正方形 则其对 角线的长度就是以原点为圆心 正方形的对角线为半径画弧 2 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 41 OA C B 与正半轴的交点就表示 与负半轴的交点就是 22 事实上通过这种做法 我们可以把每一个无理数都在数轴上表示出 来 即数轴上有些点表示无理数 归纳 实数与数轴上的点是一一对应的 即没一个实数都可以用 数轴上的点来表示 反过来 数轴上的每一个点都表示一个实数 对于数轴上的任意两个点 右边的点所表示的实数总比左边 的点表示的实数大 活动三活动三 应用新知应用新知 例 1 下列实数中 无理数有哪些 2 17 2 37 0 14 3 3 50 11121211211121 10 2 4 解 无理数有 2 3 5 注 带根号的数不一定是无理数 比如 它其实是有理 2 4 数 4 无限小数不一定是无理数 无限不循环小数一定是无理数 比如 11121211211121 10 例 2 把无理数在数轴上表示出来 5 分析 类比的表示方法 我们需要构造出长度为的线段 25 从而以它为半径画弧 与数轴正半轴的交点就表示 5 解 如图所示 1 2 ABOA 由勾股定理可知 以原5 OB 点为圆心 以长度为半径画弧 与数轴的正半轴交于点 OOBC 则点就表示 C5 课堂小结课堂小结 课堂检测课堂检测 1 判断下列说法是否正确 无限小数都是无理数 无理数都是无限小数 带根号的数都是无理数 如皋市江安镇滨江初级中学七年级数学备课组 主备人 张剑峰 42 有理数集合无理数集合 课题课题 6 36 3 实数 第实数 第 2 2 课时 课时 所有的有理数都可以用数轴上的点来表示 反过来 数轴上 所有的点都表示有理数 所有实数都可以用数轴上的点来表示 反过来 数轴上的所 有的点都表示实数 2 把下列各数分别填在相应的集合里 7 22 1415926 3 78 3 26 0036 3 313113111 0 3 比较下列各组实数的大小 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清洁用品仓储行业跨境出海战略研究报告
- 电影配乐行业跨境出海战略研究报告
- 线上剧本杀游戏平台企业制定与实施新质生产力战略研究报告
- 美术材料与技法创新行业深度调研及发展战略咨询报告
- 社区音乐节行业跨境出海战略研究报告
- 中华文化与青少年德育的融合发展
- 产品推广中的情感营销策略
- 互联网时代的网络信息安全技术
- 工作压力下的高效工作方式与沟通策略探讨
- 中学生社会调查报告
- 《丰田生产方式》课件
- 护理中的急性肾损伤护理
- 《大学生心理健康》课程标准
- 一例脓毒性休克的护理查房
- 2024年湖北省中考地理·生物试卷(含答案解析)
- 2024年安徽省高考生物试卷(真题+答案)
- 小学六年级数学奥数题100题附答案(完整版)
- 2024陕西中考数学二轮专题训练 题型四 尺规作图 (含答案)
- 烫伤不良事件原因分析与整改措施
- 1.5 西门子TIA博途软件的使用入门
- 幼儿园大班科学课件:《植物的生长》
评论
0/150
提交评论