高中物理平抛运动_第1页
高中物理平抛运动_第2页
高中物理平抛运动_第3页
高中物理平抛运动_第4页
高中物理平抛运动_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 P 蜡块的位置 v vx vy 涉及的公式 涉及的公式 22 yx vvv x y v v tan v v水 v船 临 v d t min sin d x 临 临 v v tan d 第五章第五章 平抛运动平抛运动 5 1 5 1 曲线运动曲线运动 运动的合成与分解运动的合成与分解 1 曲线运动 1 1 定义 定义 物体运动轨迹是曲线的运动 2 2 条件 条件 运动物体所受合力的方向跟它的速度方向不在同一直线上 3 3 特点 特点 方向 某点瞬时速度方向就是通过这一点的曲线的切线方向 运动类型 变速运动 速度方向不断变化 F合 0 一定有加速度 a F合方向一定指向曲线凹侧 F合可以分解成水平和竖直的两个力 4 4 运动描述运动描述 蜡块运动蜡块运动 2 运动的合成与分解 1 合运动与分运动的关系 合运动与分运动的关系 等时性 独立性 等效性 矢量性 2 2 互成角度的两个分运动的合运动的判断 互成角度的两个分运动的合运动的判断 两个匀速直线运动的合运动仍然是匀速直线运动 速度方向不在同一直线上的两个分运动 一个是匀速直线运动 一个是匀变速直线运动 其 合运动是匀变速曲线曲线运动 a合为分运动的加速度 两初速度为 0 的匀加速直线运动的合运动仍然是匀加速直线运动 两个初速度不为 0 的匀加速直线运动的合运动可能是直线运动也可能是曲线运动 当两个分 运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时 合运动是匀变速直线 运动 否则即为曲线运动 3 有关 曲线运动 的两大题型 1 1 小船过河问题小船过河问题 模型模型一 一 过河时间 t 最短 模型二 模型二 直接位移 x 最短 模型三 模型三 间接位移 x 最短 d v v水 v船 当 v水v船时 L v vd x 临 临 cos min sin 临 v d t 临 临 v v cos sin cos min 临 临临 v L vvs v船d 2 触类旁通 1 2011 年上海卷 如图 5 4 所示 人沿平直的 河岸以速度 v 行走 且通过不可伸长的绳拖船 船沿绳的方向 行进 此过程中绳始终与水面平行 当绳与河岸的夹角为 时 船的速率为 C sin vA sin v B cos vC cos v D 解析 解析 依题意 船沿着绳子的方向前进 即船的速度总是沿着绳子的 根据绳子两端连接的物 体在绳子方向上的投影速度相同 可知人的速度 v 在绳子方向上的分量等于船速 故 v船 v cos C 正确 2 2011 年江苏卷 如图 5 5 所示 甲 乙两同学从河中 O 点出 发 分别沿直线游到 A 点和 B 点后 立即沿原路线返回到 O 点 OA OB 分别与水流方向平行和垂直 且 OA OB 若水流速度不变 两人在静水中游速相等 则他们所用时间 t 甲 t 乙的大小关系为 C A t甲t乙 D 无法确定 解析 解析 设游速为 v 水速为 v0 OA OB l 则 t甲 乙沿 OB 运动 乙的速度矢量图如图 4 所示 合速 l v v0 l v v0 度必须沿 OB 方向 则 t乙 2 联立解得 t甲 t乙 C 正确 l v2 v2 0 2 2 绳杆问题绳杆问题 连带运动问题连带运动问题 1 实质 合运动的识别与合运动的分解 2 关键 物体的实际运动是合速度 分速度的方向要按实际运动效果确定 沿绳 或杆 方向的分速度大小相等 模型四 模型四 如图甲 绳子一头连着物体 B 一头拉小船 A 这时船的运动方向不沿绳子 处理方法 处理方法 如图乙 把小船的速度 vA沿绳方向和垂直于绳的方向 分解为v1和 v2 v1就是拉绳的速度 vA就是小船的实际速度 触类旁通 如图 在水平地面上做匀速直线运动的汽车 通过定滑 轮用绳子吊起一个物体 若汽车和被吊物体在同一时刻的速度分别 为 v1 和 v2 则下列说法正确的是 C A 物体做匀速运动 且 v2 v1 B 物体做加速运动 且 v2 v1 C 物体做加速运动 且 v2 v1 D 物体做减速运动 且 v2r 联立 式解得r v 4 7 43 g2 0 5 3 5 3 圆周运动圆周运动 向心力向心力 生活中常见圆周运动生活中常见圆周运动 一 匀速圆周运动 1 1 定义 定义 物体的运动轨迹是圆的运动叫做圆周运动 物体运动的线速度大小不变的圆周运动即 为匀速圆周运动 2 2 特点 特点 轨迹是圆 线速度 加速度均大小不变 方向不断改变 故属于加速度改变的变 速曲线运动 匀速圆周运动的角速度恒定 匀速圆周运动发生条件是质点受到大小不变 方 向始终与速度方向垂直的合外力 匀速圆周运动的运动状态周而复始地出现 匀速圆周运动 具有周期性 3 3 描述圆周运动的物理量 描述圆周运动的物理量 1 线速度线速度 v v 是描述质点沿圆周运动快慢的物理量 是矢量 其方向沿轨迹切线 国际单位 考点一 沿初速度方向的水平位移 考点一 沿初速度方向的水平位移 根据mamgatbtvs sin 2 1 2 0 sin 2 0 g b vs 考点二 入射的初速度 考点二 入射的初速度 2 sin 2 1 sin sin 00 2 b g vtvatabg m mg a 考点三 考点三 P P 到到 Q Q 的运动时间 的运动时间 sin 2 2 1 sin sin 2 g b ttabg m mg a 6 制中单位符号是 m s 匀速圆周运动中 v 的大小不变 方向却一直在变 2 角速度角速度 是描述质点绕圆心转动快慢的物理量 是矢量 国际单位符号是 rad s 3 周期周期 T T 是质点沿圆周运动一周所用时间 在国际单位制中单位符号是 s 4 频率频率 f f 是质点在单位时间内完成一个完整圆周运动的次数 在国际单位制中单位符号是 Hz 5 转速转速 n n 是质点在单位时间内转过的圈数 单位符号为 r s 以及 r min 4 4 各运动参量之间的转换关系 各运动参量之间的转换关系 2 2 2 2 2 R v Tn TR v nRR T Rv 临临 5 5 三种常见的转动装置及其特点 三种常见的转动装置及其特点 模型一 模型一 共轴传动 模型二模型二 皮带传动 模型三 模型三 齿轮传动 触类旁通 1 一个内壁光滑的圆锥形筒的轴线垂直于水平面 圆锥筒固定 有质量相同的小球A和B沿着筒的内壁在水平面内做匀速圆周运动 如图 所示 A的运动半径较大 则 AC A A球的角速度必小于B球的角速度 B A球的线速度必小于B球的线速度 C A球的运动周期必大于B球的运动周期 D A球对筒壁的压力必大于B球对筒壁的压力 解析 解析 小球 A B 的运动状态即运动条件均相同 属于三种模型中的皮带传 送 则可以知道 两个小球的线速度 v 相同 B 错 因为 RA RB 则 A B TA TB A C 正确 又因为两小球各方面条件均相同 所以 两小球对筒壁的压力相同 D 错 所以 A C 正确 2 两个大轮半径相等的皮带轮的结构如图所示 AB 两点的半径之比 为 2 1 CD 两点的半径之比也为 2 1 则 ABCD 四点的角速度之 比为 1 1 2 2 这四点的线速度之比为 2 1 4 2 二 向心加速度 1 1 定义 定义 任何做匀速圆周运动的物体的加速度都指向圆心 这个加速度叫向心加速度 注 并不是任何情况下 向心加速度的方向都是指向圆心 当物体做变速圆周运动时 向心加 速度的一个分加速度指向圆心 r R O B A BA B A BA TT r R v v A B O r R O r R T T R r vv A B A B BA A B r2 r1 A B B A BA n n r r T T vv 2 1 2 1 7 2 2 方向 方向 在匀速圆周运动中 始终指向圆心 始终与线速度的方向垂直 向心加速度只改变线 速度的方向而非大小 3 3 意义 意义 描述圆周运动速度方向方向改变快慢的物理量 4 4 公式 公式 2 2 2 2 2 2 rnr T vr r v an 5 5 两个函数图像 两个函数图像 触类旁通 1 如图所示的吊臂上有一个可以沿水平方向运动的小车 A 小车下装有吊着物体 B 的吊钩 在小车 A 与物体 B 以相同的水平速度沿 吊臂方向匀速运动的同时 吊钩将物体 B 向上吊起 A B 之间的距离以 d H 2t2 SI SI 表示国际单位制 式中 H 为吊臂离地面的高度 规律 变化 对于地面的人来说 则物体做 AC 速度大小不变的曲线运动 速度大小增加的曲线运动 加速度大小方向均不变的曲线运动 加速度大小方向均变化的曲线运动 2 如图所示 位于竖直平面上的圆弧轨道光滑 半径为 R OB 沿竖直方向 上端 A 距地面高 度为 H 质量为 m 的小球从 A 点由静止释放 到达 B 点时的速度为 最后落在地面上 C 点处 不计空气阻力 求 1 小球刚运动到 B 点时的加速度为多大 对轨道的压力多大 2 小球落地点 C 与 B 点水平距离为多少 三 向心力 1 1 定义 定义 做圆周运动的物体所受到的沿着半径指向圆心的合力 叫做向心力 2 2 方向 方向 总是指向圆心 3 3 公式 公式 2 2 2 2 2 2 rnmr T mmvrm r v mFn 4 4 几个注意点 几个注意点 向心力的方向总是指向圆心 它的方向时刻在变化 虽然它的大小不变 但 是向心力也是变力 在受力分析时 只分析性质力 而不分析效果力 因此在受力分析是 不要加上向心力 描述做匀速圆周运动的物体时 不能说该物体受向心力 而是说该物体受 OO anan r r v 一定 一定 A B 8 到什么力 这几个力的合力充当或提供向心力 四 变速圆周运动的处理方法 1 1 特点 特点 线速度 向心力 向心加速度的大小和方向均变化 2 2 动力学方程 动力学方程 合外力沿法线方向的分力提供向心力 合外力沿切线方向的 rm r v mFn 2 2 分力产生切线加速度 FT m aT 3 3 离心运动 离心运动 1 当物体实际受到的沿半径方向的合力满足 F供 F需 m 2r 时 物体做圆周运动 当 F供 F 需 m 2r 时 物体做离心运动 2 离心运动并不是受 离心力 的作用产生的运动 而是惯性的表现 是 F供 gR 小球固定 在轻杆的 一端在竖 直平面内 转动 杆对球可以 是拉力也可 以是支持力 若 F 0 则 mg v mv2 RgR 若 F 向下 则 mg F m v v2 RgR 若 F 向上 则 mg F 或 mg F 0 mv2 R 则 0 v gR 小球在竖 直细管内 转动 管对球的弹 力FN可以向 上也可以向 下 依据 mg 判断 若 v v0 FN 0 若 mv2 0 R vv0 FN向下 球壳外的 小球 在最高点时 弹力FN的方 向向上 如果刚好能通过球壳的最高点 A 则 vA 0 FN mg 如果到达某点后离开球壳面 该点处小 球受到壳面的弹力 FN 0 之后改做斜抛运 动 若在最高点离开则为平抛运动 六 有关生活中常见圆周运动的涉及的几大题型分析 1 1 解题步骤 解题步骤 明确研究对象 定圆心找半径 对研究对象进行受力分析 对外力进行正交分解 9 列方程 将与和物体在同一圆周运动平面上的力或其分力代数运算后 另得数等于 向心力 解方程并对结果进行必要的讨论 2 2 典型模型 典型模型 I 圆周运动中的动力学问题 谈一谈 谈一谈 圆周运动问题属于一般的动力学问题 无非是由物体的受力情况确定物体的运动情况 或者由物体的运动情况求解物体的受力情况 解题思路就是 以加速度为纽带 运用那个牛顿 第二定律和运动学公式列方程 求解并讨论 模型一 模型一 火车转弯问题 模型二 模型二 汽车过拱桥问题 触类旁通 1 铁路在弯道处的内外轨道高度是不同的 已知内外轨道平面与水平面的倾角为 如图所示 弯道处的圆弧半径为 R 若质量为 m 的火车转弯时 速度小于 则 A A 内轨对内侧车轮轮缘有挤压 B 外轨对外侧车轮轮缘有挤压 C 这时铁轨对火车的支持力等于 D 这时铁轨对火车的支持力大于 解析 解析 当内外轨对轮缘没有挤压时 物体受重力和支持力的合力提供向心力 此时速度为 FN F合 mg h L a a 涉及公式 涉及公式 L h mgmgF sinmgtan 临 由 得 R v mF 2 0 临 L Rgh v 0 b b 分析 分析 设转弯时火车的行驶速度为 v 则 1 若 v v0 外轨道对火车轮缘有挤压作用 2 若 v v0 内轨道对火车轮缘有挤压作用 a a 涉及公式 涉及公式 所以当 R v mFmg N 2 mg R v mmgFN 2 此时汽车处于失重状态 而且 v 越大越明显 因此汽车过拱桥时不 宜告诉行驶 b b 分析 分析 当 gRv R v mmgFN 2 1 汽车对桥面的压力为 0 汽车出于完全失重状态 gRv 2 汽车对桥面的压力为 gRv 0mgFN 0 3 汽车将脱离桥面 出现飞车现象 gRv c c 注意 注意 同样 当汽车过凹形桥底端时满足 汽车 R v mmgFN 2 对桥面的压力将大于汽车重力 汽车处于超重状态 若车速过大 容易出现爆胎现象 即也不宜高速行驶 10 gRtan 2 如图所示 质量为 m 的物体从半径为 R 的半球形碗边向碗底滑动 滑 倒最低点时的速度为 v 若物体滑倒最低点时受到的摩擦力是 f 则物体 与碗的动摩擦因数 为 B A B C D mg f 2 mvmgR fR 2 mvmgR fR 2 mv fR 解析 解析 设在最低点时 碗对物体的支持力为 F 则 解得 由 R v mmamgF 2 R v mmgF 2 f F 解得 化简得 所以 B 正确 R v mmg f 2 2 mvmgR fR II 圆周运动的临界问题 A A 常见竖直平面内圆周运动的最高点的临界问题常见竖直平面内圆周运动的最高点的临界问题 谈一谈 谈一谈 竖直平面内的圆周运动是典型的变速圆周运动 对于物体在竖直平面内做变速圆周运 动的问题 中学物理只研究问题通过最高点和最低点的情况 并且经常出现有关最高点的临界 问题 模型三 模型三 轻绳约束 单轨约束条件下 小球过圆周最高点 模型四 模型四 轻杆约束 双轨约束条件下 小球过圆周最高点 注意 注意 绳对小球只能产生沿绳收缩方向的拉力 1 临界条件 小球到达最高点时 绳子的拉力或单 轨的弹力刚好等于 0 小球的重力提供向心力 即 gR 2 临临 临临 v R v mmg 2 小球能过最高点的条件 绳临临gR gR vv 对球产生向下的拉力或轨道对球产生向下的压力 3 小球不能过最高点的条件 实际上球还gR v 没到最高点时就脱离了轨道 1 临界条件 由于轻杆和双轨的支撑作用 小球恰能到达最 高点的临街速度 0 临临 v 2 如图甲所示的小球过最高点时 轻杆对小球的弹力情况 当 v 0 时 轻杆对小球有竖直向上的支持力 FN 其大小等于 小球的重力 即 FN mg 当时 轻杆对小球的支持力的方向竖直向上 大小gR0 v 随小球速度的增大而减小 其取值范围是 gFNm0 v v v O 绳 O R 杆 O v 甲甲 v 乙乙 当时 FN 0 gR v 当时 轻杆对小球有指向圆心的拉力 其大小随速度的增大而增大 gR v 3 如图乙所示的小球过最高点时 光滑双轨对小球的弹力情况 当 v 0 时 轨道的内壁下侧对小球有竖直向上的支持力 FN 其大小等于小球的重力 即 FN mg 当时 轨道的内壁下侧对小球仍有竖直向上的支持力 FN 大小随小球速度的增gR0 v 大而减小 其取值范围是 gFNm0 当时 FN 0 gR v 当时 轨道的内壁上侧对小球有竖直向下指向圆心的弹力 其大小随速度的增大gR v 而增大 11 b a O Q P M O L A F 模型五 模型五 小物体在竖直半圆面的外轨道做圆周运动 触类旁通 1 如图所示 质量为 0 5 kg 的小杯里盛有 1 kg 的水 用绳子 系住小杯在竖直平面内做 水流星 表演 转动半径为 1 m 小杯通过最高 点的速度为 4 m s g 取 10 m s2 求 1 在最高点时 绳的拉力 2 在最高点时水对小杯底的压力 3 为使小杯经过最高点时水不流出 在最高点时最小速率是多少 答案 答案 1 9 N 方向竖直向下 2 6 N 方向竖直向上 3 m s 3 16 m s 2 如图所示 细杆的一端与一小球相连 可绕过 O 点的水平轴自由转动 现 给小球一初速度 使其做圆周运动 图中 a b 分别表示小球轨道的最低点和 最高点 则杆对球的作用力可能是 AB A a 处为拉力 b 处为拉力 B a 处为拉力 b 处为推力 C a 处为推力 b 处为拉力 D a 处为推力 b 处为推力 3 如图所示 LMPQ 是光滑轨道 LM 水平 长为 5m MPQ 是一半径 R 1 6m 的半圆 QOM 在同一竖直面上 在恒力 F 作用下 质量 m 1kg 的物体 A 从 L 点由静止开始运动 当达到 M 时立即停止用力 欲使 A 刚好能通过 Q 点 则力 F 大小为多少 取 g 10m s2 解析 解析 物体 A 经过 Q 时 其受力情况如图所示 由牛顿第二定律得 R v mFmg N 2 物体 A 刚好过 A 时有 FN 0 解得 smgRv 4 对物体从 L 到 Q 全过程 由动能定理得 解得 F 8N 2 2 1 2mvmgRLMF B B 物体在水平面内做圆周运动的临界问题物体在水平面内做圆周运动的临界问题 谈一谈 谈一谈 在水平面内做圆周运动的物体 当角速度 变化时 物体有远离或向着圆心运动 半径变化 的趋势 这时要根据物体的受力情况判断物体所受的某个力是否存在以及这个力 存在时方向如何 特别是一些接触力 如静摩擦力 绳的拉力等 两种情况 两种情况 1 若使物体能从最高点沿轨道外侧下滑 物体在最高点的速度 v 的限制条件是 gRv 2 若 物体将从最高电起 脱离圆轨道做平抛运动 gRv Q P M mg FN O 12 模型六 模型六 转盘问题 综合应用 1 如图所示 按顺时针方向在竖直平面内做匀速转动的轮子其边缘上有一点 A 当 A 通过与 圆心等高的 a 处时 有一质点 B 从圆心 O 处开始做自由落体运动 已知轮子的半径为 R 求 1 轮子的角速度 满足什么条件时 点 A 才能与质点 B 相遇 2 轮子的角速度 满足什么条件时 点 A 与质点 B 的速度才有可能在某时刻相同 解析 解析 1 点 A 只能与质点 B 在 d 处相遇 即轮子的最低处 则点 A 从 a 处转到 d 处所 转过的角度应为 2n 其中n为自然数 3 2 由h gt2知 质点B从O点落到d处所用的时间为t 则轮子的角速度应满足条件 1 2 2R g 2n 其中n为自然数 t 3 2 g 2R 2 点 A 与质点 B 的速度相同时 点 A 的速度方向必然向下 因此速度相同时 点 A 必然运动到了 c 处 则点 A 运动到 c 处时所转过的角度应为 2n 其中 n 为自然数 转过的时间为 12 n t 此时质点 B 的速度为 vB gt 又因为轮子做匀速转动 所以点 A 的速度为 vA R 由 vA vB 得 轮子的角速度应满足条件 其中n为自然数 R gn 12 2 2009 年高考浙江理综 某校物理兴趣小组决定举行遥控赛车比赛 比赛路径如下图所示 赛车从起点 A 出发 沿水平直线轨道运动 L 后 由 B 点进入半径为 R 的光滑竖直圆轨道 离开 竖直圆轨道后继续在光滑平直轨道上运动到 C 点 并能越过壕沟 已知赛车质量 m 0 1 kg 通电后以额定功率 P 1 5 W 工作 进入竖直轨道前受到的阻力恒为 0 3 N 随后在运动中受到 的阻力均可不记 图中 L 10 00 m R 0 32 m h 1 25 m x 1 50 m 问 要使赛车完成 比赛 电动机至少工作多长时间 取 g 10 m s2 解析 解析 设赛车越过壕沟需要的最小速度为v1 由平抛运动的规律 x v1t h gt2 解得 v1 x 3 m s 1 2 R 2h 设赛车恰好越过圆轨道 对应圆轨道最高点的速度为v2 最低点的速度为v3 由牛顿第二 定律及机械能守恒定律得 处理方法 先对先对 A A 进行受力分析 如图所示 注意在分析时不能忽略摩擦力 进行受力分析 如图所示 注意在分析时不能忽略摩擦力 当然 如果说明盘面为光滑平面 摩擦力就可以忽略了 受力分析完成后 可当然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论