第四讲淀积工艺(半导体制造技术).ppt_第1页
第四讲淀积工艺(半导体制造技术).ppt_第2页
第四讲淀积工艺(半导体制造技术).ppt_第3页
第四讲淀积工艺(半导体制造技术).ppt_第4页
第四讲淀积工艺(半导体制造技术).ppt_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

淀积 概述 薄膜淀积是芯片加工过程中一个至关重要的工艺步骤 通过淀积工艺可以在硅片上生长导各种导电薄膜层和绝缘薄膜层 各种不同类型的薄膜淀积到硅片上 在某些情况下 这些薄膜成为器件结构中的一个完整部分 另外一些薄膜则充当了工艺过程中的牺牲品 并且在后续的工艺中被去掉 本章将讨论薄膜淀积的原理 过程和所需的设备 重点讨论SiO2和Si3N4等绝缘材料薄膜以及多晶硅的淀积 金属和金属化合物薄膜的淀积将在第13章中介绍 目标 通过本章的学习 将能够 1 描述出多层金属化 叙述并解释薄膜生长的三个阶段 2 提供对不同薄膜淀积技术的慨况 3 列举并描述化学气相淀积 CVD 反应的8个基本步骤 包括不同类型的化学反应 4 描述CVD反应如何受限制 解释反应动力学以及CVD薄膜掺杂的效应 5 描述不同类型的CVD淀积系统 解释设备的功能 讨论某种特定工具对薄膜应用的优点和局限 6 解释绝缘材料对芯片制造技术的重要性 给出应用的例子 7 讨论外延技术和三种不同的外延淀积方法 8 解释旋涂绝缘介质 MSI时代nMOS晶体管的各层膜 Figure11 1 引言 从MSI到LSI时代 芯片的设计和加工相对较为直接 上图给出了制作一个早期nMOS所需的淀积层 图中器件的特征尺寸远大于1 m 如图所示 由于特征高度的变化 硅片上各层并不平坦 这将成为VLSI时代所需的多层金属高密度芯片制造的限制因素 随着特征尺寸越来越小 在当今的高级微芯片加工过程中 需要6层甚至更多的金属来做连接 第六页的图 各金属之间的绝缘就显得非常重要 所以 在芯片制造过程中 淀积可靠的薄膜材料至关重要 薄膜制备是硅片加工中的一个重要工艺步骤 ULSI硅片上的多层金属化 Figure11 3 芯片中的金属层 Photo11 1 薄膜淀积半导体器件工艺中的 薄膜 是一种固态薄膜 薄膜的种类和制备方法在第四章中已作过简单介绍 薄膜淀积是指任何在硅片衬底上物理淀积一层膜的工艺 属于薄膜制造的一种工艺 所淀积的薄膜可以是导体 绝缘材料或者半导体材料 比如二氧化硅 SiO2 氮化硅 Si3N4 多晶硅以及金属 Cu W 固态薄膜 Figure11 4 薄膜特性 好的台阶覆盖能力填充高的深宽比间隙的能力好的厚度均匀性高纯度和高密度受控制的化学剂量高度的结构完整性和低的膜应力好的电学特性对衬底材料或下层膜好的黏附性 膜对台阶的覆盖 我们期望膜在硅片表面上厚度一致 但由于硅片表面台阶的存在 如果淀积的膜在台阶上过渡的变薄 就容易导致高的膜应力 电短路或在器件中产生不希望的诱生电荷 应力还可能导致衬底发生凸起或凹陷的变形 高的深宽比间隙可以用深宽比来描述一个小间隙 如槽或孔 深宽比定义为间隙的深度和宽度的比值 见下图 Figure11 6 高的深宽比间隙 PhotographcourtesyofIntegratedCircuitEngineering Photo11 2 薄膜生长的步骤 Figure11 7 膜淀积技术 Table11 1 化学气相淀积 化学气相淀积 CVD 是通过气体混合的化学反应在硅片表面淀积一层固体膜的工艺 硅片表面及其邻近的区域被加热来向反应系统提供附加的能量 包括 1 产生化学变化 这可以通过化学反应或热分解 2 膜中所有的材料物质都源于外部的源 3 化学气相淀积工艺中的反应物必须以气相形式参加反应 化学气相淀积的设备 Photo11 3 CVD化学过程 高温分解 通常在无氧的条件下 通过加热化合物分解 化学键断裂 2 光分解 利用辐射使化合物的化学键断裂分解 3 还原反应 反应物分子和氢发生的反应 4 氧化反应 反应物原子或分子和氧发生的反应 氧化还原反应 反应3与4地组合 反应后形成两种新的化合物 以上5中基本反应中 有一些特定的化学气相淀积反应用来在硅片衬底上淀积膜 对于某种特定反应的选择通常要考虑淀积温度 膜的特性以及加工中的问题等因素 例如 用硅烷和氧气通过氧化反应淀积SiO2膜 反应生成物SiO2淀积在硅片表面 副产物事是氢 SiH4 O2SiO2 2H2 CVD反应 CVD反应步骤基本的化学气相淀积反应包含8个主要步骤 以解释反应的机制 1 气体传输至淀积区域 2 膜先驱物的形成 3 膜先驱物附着在硅片表面 4 膜先驱物黏附 5 膜先驱物扩散 6 表面反应 7 副产物从表面移除 8 副产物从反应腔移除 CVD传输和反应步骤图 Figure11 8 在化学气相淀积中 气体先驱物传输到硅片表面进行吸附作用和反应 列入 下面的三个反应 反应1 显示硅烷首先分解成SiH2先驱物 SiH2先驱物再和硅烷反应形成Si2H6 在中间CVD反应中 SiH2随着Si2H6被吸附在硅片表面 然后Si2H6分解形成最终需要的固态硅膜 SiH4 气态 SiH2 气态 H2 气态 高温分解 SiH4 气态 SiH2 气态 Si2H6 气态 反应半成品形成 Si2H6 气态 2Si 固态 3H2 气态 最终产品形成 以上实例是硅气相外延的一个反应过程 速度限制阶段在实际大批量生产中 CVD反应的时间长短很重要 温度升高会促使表面反应速度增加 基于CVD反应的有序性 最慢的反应阶段会成为整个工艺的瓶颈 换言之 反应速度最慢的阶段将决定整个淀积过程的速度 CVD的反应速度取决于质量传输和表面反应两个因素 在质量传输阶段淀积工艺对温度不敏感 这意味着无论温度如何 传输到硅片表面加速反应的反应气体的量都不足 在此情况下 CVD工艺通常是受质量传输所限制的 在更低的反应温度和压力下 由于只有更少的能量来驱动表面反应 表面反应速度会降低 最终反应物达到硅片表面的速度将超过表面化学反应的速度 在这种情况下 淀积速度是受化学反应速度限制的 此时称表面反应控制限制 CVD气流动力学CVD气流动力学对淀积出均匀的膜很重要 所谓气体流动 指的是反应气体输送到硅片表面的反应区域 见下图 CVD气体流动的主要因素包括 反应气体从主气流中到硅片表面的输送以及在表面的化学反应速度 CVD中的气流 Figure11 9 硅片表面的气流 Figure11 10 CVD反应中的压力如果CVD发生在低压下 反应气体通过边界层达到表面的扩散作用会显著增加 这会增加反应物到衬底的输运 在CVD反应中低压的作用就是使反应物更快地到达衬底表面 在这种情况下 速度限制将受约于表面反应 即在较低压下CVD工艺是反应速度限制的 CVD过程中的掺杂CVD淀积过程中 在SiO2中掺入杂质对硅片加工来说也是很重要 例如 在淀积SiO2的过程中 反应气体中加入PH3后 会形成磷硅玻璃 化学反应方程如下 SiH4 气 2PH3 气 O2 气 SiO2 固 2P 固 5H2 气 在磷硅玻璃中 磷以P2O5的形式存在 磷硅玻璃由P2O5和SiO2的混合物共同组成 对于要永久黏附在硅片表面的磷硅玻璃来说 P2O5含量 重量比 不超过4 这是因为磷硅玻璃 PSG 有吸潮作用 应用高密度等离子体CVD可以在600 650 的温度下淀积PSG 由于它的淀积温度 相对平坦的表面 好的间隙填充能力 近来也常采用PSG作为第一层层间介质 ILD 1 在SiO2中引入P2O5可以减小膜应力 进而改进膜的完整性 掺杂会增加玻璃的抗吸水性 PSG层还可以有效地固定离子杂质 离子会吸附到磷原子上 因而不能通过PSG层扩散达到硅片表面 CVD淀积系统 CVD设备设计CVD反应器的加热CVD反应器的配置CVD反应器的总结常压CVD APCVD 低压CVD LPCVD 等离子体辅助CVD等离子体增强CVD PECVD 高密度等离子体CVD HDPCVD CVD反应器类型 Figure11 11 各种类型CVD反应器及其主要特点 Table11 2 连续加工的APCVD反应炉 Figure11 12 APCVDTEOS O3改善后的台阶覆盖 Figure11 3 用TEOS O3淀积SiO2TEOS是正硅酸乙脂 分子式为Si C2H5O4 是一种液体 臭氧 O3 包含三个氧原子 比氧气有更强的反应活性 因此 这步工艺可以不用等离子体 在低温下 如400 进行 因为不需要等离子体 O3就能是TEOS分解 因此反应可以在常压 APCVD 760托 或者亚常压 SACVD 600托 下 淀积的二氧化硅薄膜改善了台阶覆盖轮廓 均匀性好 具有作为绝缘介质优异的电学特性 优点 对于高的深宽比槽有良好的覆盖填充能力 缺点 SiO2膜多孔 因而通常需要回流来去掉潮气并增加膜密度 PSG回流后平坦化的表面 Figure11 14 LPCVD 与APCVD相比 LPCVD系统有更低的成本 更高的产量及更好的膜性能 因此应用更为广泛 为了获得低压 必须在中等真空度下阿 约0 1 5托 反应温度一般在300 900 常规的氧化炉设备就可以应用 LPCVD的反应室通常是反应速度限制的 在这种低压条件下 反应气体的质量传输不再限制反应的速度 不同于APCVD的是 LPCVD反应中的边界层由于低压的缘故 距离硅片表面更远 见下图 边界层的分子密度低 使得进入的气体分子很容易通过这一层扩散 是硅片表面接触足够的反应气体分子 一般来说 LPCVD具有优良的台阶覆盖能力 硅片表面的边界层 Figure11 15 LPCVDReactionChamberforDepositionofOxides Nitrides orPolysilicon Figure11 16 用TEOSLPCVD淀积氧化硅 Figure11 17 KeyReasonsfortheUseofDopedPolysiliconintheGateStructure 1 通过掺杂可得到特定的电阻 2 和二氧化硅优良的界面特性 3 和后续高温工艺的兼容性 4 比金属电极 如AI 更高的可靠性 5 在陡峭的结构上淀积的均匀性 6 实现栅的自对准工艺 DopedPolysiliconasaGateelectrode Figure11 18 等离子体辅助CVD CVD过程中使用等离子体的好处1 更低的工艺温度 250 450 2 对高的深宽比间隙有好的填充能力 用高密度等离子体 3 淀积的膜对硅片有优良的黏附能力 4 高的淀积速率 5 少的针孔和空洞 因为有高的膜密度 6 工艺温度低 因而应用范围广 在等离子体辅助CVD中膜的形成 Figure11 19 GeneralSchematicofPECVDforDepositionofOxides Nitrides SiliconOxynitrideorTungsten Figure11 20 用LPCVD和PECVD氮化硅的性质 Table11 3 高密度等离子体淀积腔 Photo11 4 淀积 刻蚀 淀积工艺 Figure11 21 HDPCVD工艺的五个步骤 1 离子诱导淀积 指离子被托出等离子体并淀积形成间隙填充的现象 2 溅射刻蚀 具有一定能量的Ar和因为硅片偏置被吸引到薄膜的反应离子轰击表面并刻蚀原子 3 再次淀积 原子从间隙的底部被剥离 通常会再次淀积到侧壁上 4 热中性CVD 这对热能驱动的一些淀积反应有很小的贡献 5 反射 离子反射出侧壁 然后淀积 是另一种贡献 在涡轮泵出口放置硅片的HDPCVD Figure11 22 介质及其性能 介电常数间隙填充芯片性能低k值介电常数高k值介电常数器件隔离局部氧化 LOCOS 浅曹隔离 STI 介质间隙填充的三个过程 Figure11 23 ULSI互连中可能的低K值ILD材料 Table11 4 互连延迟 RC 与特征尺寸的关系 m Figure11 24 芯片性能 芯片性能的一项指标是信号的传输速度 芯片的不断缩小导致互联线宽度减小 使得传输信号导线电阻 R 增大 而且 导线间距的缩小产生了更多的寄生电容 C 最终增加了RC信号延迟 RC信号延迟降低芯片速度 减弱芯片性能 这是在亚0 25 m中凸现的问题 通常称为互连延迟 如上图所示 从本质上讲 减小互连尺寸带来的寄生电阻和电容效应而导致更大的信号延迟 这与晶体管的发展正好相反 对晶体管而言 随着栅长变小 延迟变小 晶体管的速度增加 线电容C正比于绝缘介质的k值 低K值的绝缘介质可以减小芯片总的互连电容 减小RC信号延迟 提供芯片性能 总互连线电容 Figure11 25 低 k值绝缘介质要求 Table11 5 DRAM叠层电容的示意图 Figure11 26 浅槽隔离 Photo11 5 旋涂绝缘介质 旋涂玻璃 SOG 旋涂绝缘介质 SOD 外延外延生长方法气相外延 VEP 金属有机CVD分子束外延 MBE CVD质量测量CVD检查及故障排除 用Spin On Glass填充间隙 Figure11 27 HSQ低 k值绝缘介质工艺参数 Table11 6 外延 外延生长模型外延生长方法气相外延 VPE 金属有机CVD MOCVD 分子束外延 MBE 外延就是在单晶衬底上淀积一层薄的单晶层 见下图 新淀积的这层称为外延层 外延为器件设计者在优化器件性能方面提供了很大的灵活性 例如可以控制外延层厚

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论