全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档数列中的奇偶项问题例1、已知数列满足:,设.(1)求并证明:(2)证明:数列等比数列;若成等比数列,求正整数k的值.例2、设等差数列的前n项和为,且数列的前n项和为,且,(I)求数列,的通项公式;(II)设, 求数列的前项和3、 一个数列an,当n是奇数时,an5n1;当n为偶数时,an,则这个数列的前2m项的和是_练习1已知等差数列an的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为()A10 B20 C30 D402、等比数列的首项为,项数是偶数,所有的奇数项之和为,所有的偶数项之和为,则这个等比数列的项数为 (A) (B) (C) (D)3、已知数列an,bn满足a11,且an,an1是函数f(x)x2bnx2n的两个零点,则b10_.4、已知数列an满足a15,anan12n,则()A2 B4 C5 D.5已知数列an满足a11,an1an2n(nN*),设Sn是数列an的前n项和,则S2 014()A22 0141 B321 0073C321 0071 D321 00726. 于数列an,定义数列an1an为数列an的“差数列”,若a12,an的“差数列”的通项公式为2n,则数列an的前n项和Sn_.7、(2013天津高考)已知首项为的等比数列an的前n项和为Sn(nN*),且2S2,S3,4S4成等差数列(1)求数列an的通项公式;(2)证明Sn(nN*)8、已知Sn是等比数列an的前n项和,S4,S2,S3成等差数列,且a2a3a418.求数列an的通项公式;是否存在正整数n,使得Sn2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由解:(1) (2)因为所以数列是以3为首项,2为公比的等比数列.由数列可得,则,因为成等比数列,所以,令,得,解得,得.解:()由题意,得 3分 ,两式相减,得数列为等比数列, 7分() 当为偶数时, = 当为奇数时,(法一)为偶数, (法二) 解析:当n为奇数时,an是以6为首项,以10为公差的等差数列;当n为偶数时,an是以2为首项,以2为公比的等比数列所以,S2mS奇S偶ma1106m5m(m1)2(2m1)6m5m25m2m122m15m2m2.解析:选A设这个数列有2n项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd,即25152n,故2n10,即数列的项数为10.解析:anan1bn,anan12n,an1an22n1,an22an.又a11,a1a22,a22,a2n2n,a2n12n1(nN*),b10a10a1164.解析:选B依题意得2,即2,故数列a1,a3,a5,a7,是一个以5为首项、2为公比的等比数列,因此4.解析:选B由2,且a22,得数列an的奇数项构成以1为首项,2为公比的等比数列,偶数项构成以2为首项,2为公比的等比数列,故S2 014(a1a3a5a2 013)(a2a4a6a2 014)321 0073.对比: an1/an2n则用累乘法,解析:an1an2nan(anan1)(an1an2)(a2a1)a12n12n2222222n222n.Sn2n12.解题指导(1)利用等差数列的性质求出等比数列的公比,写出通项公式;(2)求出前n项和,根据函数的单调性证明解(1)设等比数列an的公比为q,因为2S2,S3,4S4成等差数列,所以S32S24S4S3,即S4S3S2S4,可得2a4a3,于是q.又a1,所以等比数列an的通项公式为ann1(1)n1.(2)证明:Sn1n,Sn1n当n为奇数时,Sn随n的增大而减小,所以SnS1.当n为偶数时,Sn随n的增大而减小,所以SnS2.故对于nN*,有Sn.解析:设数列an的公比为q,则a10,q0.由题意得即解得故数列an的通项公式为an3(2)n1.由有Sn1(2)n.若存在n,使得Sn2 013,则1(2)n2 013,即(2)n2 012.当n为偶数时,(2)n0,上式不成立;当n为奇数时,(2)n2n2 012,即2n2 012,则n11.综上,存在符合条件的正整数n,且所有这样的n的集合为n|n2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿工程项目招投标委托
- 体育场馆租赁经营合同
- 仪器库房物资盘点制度
- 外企劳资管理实施办法
- 旅游开发项目投资指导
- 夏令营地活动安全保障协议
- 电子产品CEO聘用合同
- 机械制造厂房租赁
- 工厂门禁安装合同
- 医疗器械研发生产投标书
- 食品储存不当的危害合理储存避免食物中毒
- 湖北省鄂东南联考2023-2024学年高一上学期期中考试物理
- 2023-2024学年北京北师大实验中学初二(上)期中物理试卷(含答案)
- 医疗风险管理检查记录表(修)
- 湖南省娄底市涟源市2023-2024学年上学期期中质量检测九年级英语试卷
- 运动技能学习与控制课件第十一章运动技能的练习
- 国家开放大学《可编程控制器应用实训》形考任务5(实训五)参考答案
- 商业活动港风复古摩登年会主题方案
- 柴油采购投标方案(技术标)
- 3.8做改革创新生力军
- 挂篮检查验收记录表
评论
0/150
提交评论