全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十四章圆小结一、本章知识结构框图二、本章知识点概括(一)圆的有关概念1、圆(两种定义)、圆心、半径;2、圆的确定条件:圆心确定圆的位置,半径确定圆的大小;不在同一直线上的三个点确定一个圆。3、弦、直径;4、圆弧(弧)、半圆、优弧、劣弧;5、等圆、等弧,同心圆;6、圆心角、圆周角;7、圆内接多边形、多边形的外接圆;8、割线、切线、切点、切线长;9、反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。(二)圆的基本性质1、圆的对称性圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。*圆是中心对称图形,圆心是对称中心。2、圆的弦、弧、直径的关系垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。* 引申 一条直线若具有:、经过圆心;、垂直于弦;、平分弦;、平分弦所对的劣弧;、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。(注意:具有和时,应除去弦为直径的情况)3、弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。4、圆周角的性质定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。(三)与圆有关的位置关系1、点与圆的位置关系设O的半径为r,OP=d则:点P在圆内dr.2、直线与圆的位置关系设O的半径为r,圆心O到l的距离为d则:直线l与O相交 dr 直线和圆没有公共点。3、圆与圆的位置关系如果两圆没有公共点,那么这两个圆相离,分为外离和内含;如果两圆只有一个公共点,那么这两个圆相切,分为外切和内切;如果两个圆有两个公共点,那么这两个圆相交。设O1的半径为r1,O2半径为r2,圆心距为d,则:两圆外离 dr2r1;两圆外切 dr2r1;两圆相交 r2r1dr2r1(r2r1);两圆内切 dr2r1(r2r1);两圆内含 0dr2r1(r2r1)。 (四)圆的切线1、定义:和圆只有一个公共点的直线是圆的切线。2、性质:圆的切线到圆心的距离等于半径。定理:圆的切线垂直于过切点的半径。切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。3、判定:利用切线的定义。到圆心的距离等于半径的直线是圆的切线。定理:经过半径的外端并且和这条半径垂直的直线是圆的切线。(五)圆与三角形1、三角形的外接圆(1)定义:经过三角形的三个顶点的圆叫做三角形的外接圆。(2)三角形外心的性质:是三角形三条边垂直平分线的交点;到三角形各顶点距离相等;外心的位置:锐角三角形外心在三角形内,直角三角形的外心恰好是斜边的中点,钝角三角形外心在三角形外面。2、三角形的内切圆(1)定义:与三角形各边都相切的圆叫做三角形的内切圆。(2)三角形内心的性质:是三角形角平分线的交点;到三角形各边的距离相等;都在三角形内。(六)圆与四边形1、由圆周角定理可以得到:圆内接四边形对角互补。*2、由切线长定理可以得到:圆的外切四边形两组对边的和相等。(七)圆与正多边形1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形,其外接圆的圆心叫做这个正多边形的中心。2、正多边形与圆的关系把圆分成n(n3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形,这时圆叫做正n边形的外接圆。3、正多边形的有关计算(11个量)边数n,内角和,每个内角度数,外角和,每个外角度数,中心角n,边长an,半径Rn,边心距rn,周长ln,面积Sn (Sn=1/2lnrn)4、正多边形的画法画正多边形的步骤:首先画出符合要求的圆;然后用量角器或用尺规等分圆;最后顺次连结各等分点。如用尺规等分圆后作正四、八边形与正六、三、十二边形。注意减少累积误差。(八)弧长、扇形的面积、圆锥的侧面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国农业银行借款意向合同
- 2024版木模板施工合同范本
- 2024某科技公司关于手机应用开发与推广的合同
- 儿童剧编剧创作合同
- 亲子社区二手房买卖协议
- 建筑供暖系统监理合同协议
- 房地产公司退休策划师协议
- 2024版标志设计知识产权协议
- 云计算招投标合同模板
- 城市供热人工费施工合同
- 新生儿沐浴及抚触护理
- 机械原理课程设计-压床机构的设计
- 教学案例 英语教学案例 市赛一等奖
- 四川省2023职教高考英语试题
- JJG 913-2015浮标式氧气吸入器
- GB/T 28859-2012电子元器件用环氧粉末包封料
- GB/T 12190-2006电磁屏蔽室屏蔽效能的测量方法
- 2020年贵州专升本高等数学真题及答案
- 数学思想与方法期末考试范围答案全
- 调研报告:加强市属国有企业内部审计工作现状、存在的问题及对策建议
- 教学事故(差错)认定处理表(模板)
评论
0/150
提交评论