




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本定义分式的概念:分母含未知数的式子叫做分式,其中分子为整式,分母为非零整式。注意折叠掌握分式的概念应注意判断一个式子是否是分式,要看式子是否是A/ B的形式,关键要满足:(1)分式的分母中必须含有字母。(2)分母的值不能为零。由于字母可以表示不同的数,所以分式比分数更具有一般性。整式和分式统称为有理式。无理式和有理式统称代数式。不能化简后再看,6X/3X也是分式。折叠意义有无的条件(1)分式有意义条件:分母不为0;(2)分式无意义条件:分母为0;(3)分式值为0条件:分子为0且分母不为0;(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负。折叠编辑本段运算法则折叠约分把一个分式的分子和分母的公因式约去的约分(即分子与分母都除以它们的公因式),叫做分式的约分(reduction of a fraction)折叠分式的乘除法法则两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。折叠分式的加减法法则同分母的分式相加减,分母不变,把分子相加减。折叠异分母分式的加减法法则异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。折叠编辑本段基本性质折叠基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=(A*C)/(B*C), A/B=(AC)/(BC)(A,B,C为整式,且B、C不等于0)。折叠约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。折叠分式的约分步骤(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。折叠最简分式一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。折叠通分把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分。折叠分式的通分步骤先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。同时各分式按照分母所扩大的倍数,相应扩大各自的分子。注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。注:(1)约分和通分的依据都是分式的基本性质;(2)分式的约分和通分都是互逆运算过程。折叠编辑本段四则运算1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。用字母表示为:a/cb/c=(ab)/c。2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。用字母表示为:a/bc/d=(adcb)/bd。3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用字母表示为:a/b * c/d=ac/bd。4.分式的除法法则:(1).两个分式相除,把除式的分子和分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代采购服务合同样本
- 东西湖合同标准文本
- 2025国际建筑工程合同范本英文版
- 邮轮代理合同范本
- 2024年税务师考试考生福音试题及答案
- 国家电网考试必做试题及答案
- 国家电网考试亮点回顾试题及答案
- 2025至2030年中国印刷胶辊行业投资前景及策略咨询报告
- 2025路灯维修劳务合同 标准版 模板
- 2025至2030年中国单板止回阀数据监测研究报告001
- 2025年度货车司机招聘广告发布合同3篇
- 基于几类机器学习模型预测肥胖成因的分析比较
- 2025年度科室质控方案计划
- 违规吊装施工的报告范文
- 2023年郑州黄河文化旅游发展有限公司招聘考试真题
- 重大火灾隐患判定方法
- 中国发作性睡病诊断与治疗指南(2022版)
- (完整版)设备吊装施工方案
- 重庆市高2025届高三第二次质量检测 数学试卷(含答案)
- 无人机创客实验室方案
- 2024年四川省乐山市中考地理·生物合卷试卷真题(含答案)
评论
0/150
提交评论