




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
认识一元二次方程教材来源 :北师大版九年级数学教科书内容来源:九年级上册第二章第一课时主题:一元二次方程的定义课时:共10课时教学对象: 九年级学生设计者: 李海霞教学目标确定的依据:1.结合上一节课的实际问题中所建立的一元二次方程模型,激发学生求解的意识。2.教材分析教科书基于学生已有的估算意识和能力以及对方程的解的理解的基础之上,提出了本节课的具体学习任务:经历一元二次方程解的探索过程,增进对方程解的认识,发展估算意识和能力。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。3.学情分析在相关知识的学习过程中,学生已经初步感受到了方程的模型作用,并积了一些利用方程解决实际问题的经验,解决了一些实际问题。同时通过上一节课的学习,学生发现,一元二次方程在生活中也有着广泛的应用,而列方程、解方程和应用方程是一体的。在学生已有的估算能力的基础上,引导学生在具体的问题情境中,经历估计近似解的过程,寻找方程的解。4.学习目标经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解,发展学生的估算意识和能力。进一步提高学生分析问题的能力,培养学生大胆尝试的精神,在尝试的过程中体验到学习数学的乐趣,培养学生的合作学习意识,学会在合作学习中相互交流。5评价任务1、关注只是发生发展过程、关注数学活动过程由于在旧教材当中,解方程的过程大多是根据方程的特点,运用不同的解法直接求精确解,学生掌握的更多的是解方程的技巧和准确度。标准中明确要求加强学生估算意识和能力的培养,这一方面可以促进学生对方程解的理解,另一方面又为方程精确解得研究作了铺垫。2、创造性使用教材在第三环节的做一做中,我将问题串的顺序稍作改动,使得问题的解决更加流畅。3、相信学生并为学生提供充分展示自己的机会课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言以及小组合作学习等方式,帮助学生形成积极主动的求知态度。6.教学过程本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:做一做;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。第一环节:复习回顾活动内容:在上一节课中,我们得到了如下的两个一元二次方程:,即:;,即:。发现一元二次方程在现实生活中具有同样广泛的应用。上一节课的两个问题是否已经得以完全解决?你能求出各方程中的x吗?活动目的:上述两个问题是承上一节课的现实问题,通过对这两个问题情境的回顾,学生自然会产生求解的欲望,符合学生的学习心理。适当的回顾也是引导学生不仅要学会将现实问题转化为数学问题,而且还应该关注对该数学问题进行解答。第二环节:情境引入活动内容:1、有一根外带有塑料皮长为100m的电线,不知什么原因中间有一处不通,现给你一只万用表(能测量是否通)进行检查,你怎样快速的找到这一处断裂处?与同伴进行交流。2、在前一节课的问题中,我们若设地毯花边的宽为x(m),得到方程:,即:;(1)x可能小于0吗?说说你的理由(2)x可能大于4吗?可能大于25吗?说说你的理由,并与同伴进行交流(3)完成下表:x00.511.522.52x2-13x+11(4)你知道地毯花边的宽x(m)是多少吗? 还有其他求解方法吗?与同伴进行交流活动目的:设计问题1,目的在于激发学生的学习兴趣,同时让学生体会和理解“夹逼”的思想,为2的解决提供铺垫;问题2,顺应第1环节,设法求出花边的宽度,这里引领学生经历一个初步估计范围、逐步逼近的过程,为后续其他问题的解决提供了范本、样例。实际效果:通过对问题1提出的方法进行讨论,学生能够比较自然的得到“夹逼”思想解决一元二次方程的方法,并由学生概括得出用“夹逼”思想解一元二次方程的实质及步骤:在未知数x的取值范围内排除一部分取值,根据题意所列的具体情况再次进行排除;列出能反映未知数和方程的值的表格进行再次筛选;最终得出未知数的最小取值范围或具体数据。然后用这种方法解决接下来的问题2。问题2,第(1)问,因为x表示的是地毯的宽度,学生能意识到x不可能小于0;第(2)问,学生大多数能够从实际情况出发,意识到当x大于4和当x大于2.5时,将分别使原地毯的长和宽小于0,不符合实际情况;第(3)问,学生在利用计算器对表格中的数据进行计算的过程中发现,当x=1时,代数式2x2-13x+11的值等于0;花边的宽度为1m。由于方程的解是整数解,学生都能通过列表计算直接找到方程的解,这就使学生从这种求解的方法中体验到了方便和巧妙,从而增强了学生学习的积极性,同时培养学生善于观察分析问题、乐于探索研究的学习品质及与他人合作交流的意识。当然,解决第(4)问时,有的学生发现在方程中,等式的左边是一个乘积,右边等于18,而36=18,所以令8-2x=6,5-2x=3,凑出x=1,这些学生的想法很巧妙,要及时肯定。第三环节:做一做活动内容:上节课我们通过设未知数得到满足条件的方程,即梯子底端滑动的距离x(m)满足方程,把这个方程化为一般形式为(1)你能猜出滑动距离x(m)的大致范围吗?(2)小明认为底端也滑动了1 m,他的说法正确吗?为什么?(3)底端滑动的距离可能是2 m吗?可能是3 m吗?为什么?(4)x的整数部分是几?十分位是几?活动目的:在本环节中,使学生充分体验探求方程解的过程,这既是对上一环节的一个练习巩固,更重要的是在列表求解的过程中,引导学生先确定解的范围,从而让学生建立两边“夹逼”的思想方法,进而体会无限逼近的思想,促进学生对方程解的理解,为后面学习掌握配方法解一元二次方程做好充分的准备。同时,对于近似解的讨论,一方面可以促进学生对方程解的理解,发展学生的估算意识和能力,另一方面又为方程精确解的研究做铺垫。需要指出的是,在这一环节的计算中,应提倡学生使用计算器。实际效果:由于在解决上一环节问题的过程中,学生对用估算的方法求解已经有了一个初步的认识。本环节中,我将课本中的第三问直接提前到第一问,目的是让学生体会应首先从实际生活中找到x的取值范围,学生说理情况非常不错!然后再将找到的0x4的范围通过以下的几问继续“夹逼”,使x的范围进一步缩小。通过这两步的“夹逼”,让学生充分体会无限逼近的思想。 附学生对第(1)问的说理过程如下:在此题中,我认为x的取值范围是0x4。首先,梯子滑动的距离x0是显而易见的,在下图中,求得BC=6m,而BD10m,因此CD4m。所以x的取值范围是0x4。学生完成下面的表格:x01234x2+12x-15-15-2133049同时发现:没能在这些整数取值中找到方程的解,但却通过表格分析发现,当x的取值是1和2时,所对应代数式的值是-2和13,而且随着x的取值越大,相应代数式的值也越大。因此若想使代数式的值为0,那么x的取值应在1和2之间。从而确定x的整数部分是1。教师启发引导学生在1和2之间继续找方程的解。以下分了两种不同的做法:甲同学的做法:x00.511.52x2+12x-15-15-8.75-25.2513所以1x1.5进一步计算:X1.11.21.31.4x2+12x-15-0.590.842.293.76所以1.1x1.2因此x的整数部分是1,十分位是1。乙同学的做法: x1.11.21.31.41.51.61.7x2+12x-15-0.590.842.293.765.256.768.29所以1.1x1.2因此x的整数部分是1,十分位是1。对于这几种做法,教师要及时地给与肯定和鼓励,并可将二者加以比较。通过这一练习,可要求学生整理用“夹逼”思想解一元二次方程的做题思路,并可展示课本中小亮的求解过程。第四环节:练习与提高 活动内容:五个连续整数,前三个数的平方和等于后两个数的平方。您能求出这五个整数分别是多少吗?活动目的:为了检测学生对本课教学目标的达到的情况,进一步加强知识的应用训练,我给出了课本上的这道题目,这也是上一节课中的一个数学问题的延续。引导学生从知识获得途径、结论、应用、数学思想方法等几个方面展开,引导学生自主归纳完成,这有利于强化学生对知识的理解和记忆,提高分析和小结能力。教学中应关注学生对五个连续整数的不同表示方法,让学生比较异同,并在比较中找出最好的表示方法。同时这一题目也是对本节知识进行的巩固练习。实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习学生基本都能准确表示出五个连续整数,但因设法的不同,所列方程各不相同。在计算该方程的解时,很难确定x的取值范围,而且在列表的过程中,符合条件的解共有两个,教师可在学生练习中给与适当的引导和提
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华东师范大学《风景园林设计实验古典园林景观设计》2023-2024学年第二学期期末试卷
- 武汉工程大学邮电与信息工程学院《立体设计》2023-2024学年第二学期期末试卷
- 南京师范大学泰州学院《大学美育》2023-2024学年第二学期期末试卷
- 南昌航空大学《电路(下)》2023-2024学年第二学期期末试卷
- 河南检察职业学院《造型基础(工设)》2023-2024学年第二学期期末试卷
- 河源广东河源紫金县专门学校驻校教官招聘7人笔试历年参考题库附带答案详解
- 山东农业大学《组成原理与接口技术》2023-2024学年第二学期期末试卷
- 山西体育职业学院《联合创作预案》2023-2024学年第二学期期末试卷
- 中国矿业大学(北京)《基础造型》2023-2024学年第二学期期末试卷
- 河南2025年河南省工业学校招聘20人笔试历年参考题库附带答案详解-1
- 2025下半年上海事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 天津市和平区2024-2025学年高一(上)期末质量调查物理试卷(含解析)
- 《呼吸》系列油画创作中诗意建构的研究与实践
- 客流统计系统施工方案
- 船舶制造设施安全生产培训
- 全国驾驶员考试(科目一)考试题库下载1500道题(中英文对照版本)
- TSG 07-2019电梯安装修理维护质量保证手册程序文件制度文件表单一整套
- 设备损坏评估报告范文
- 标准和计量管理制度范文(2篇)
- 透析患者心理问题护理干预
- 孕前口腔护理保健
评论
0/150
提交评论