




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四讲 导数及其应用(文)高考在考什么【考题回放】1已知对任意实数,有,且时,则时( B )ABCD2曲线在点处的切线与坐标轴围成的三角形面积为( A )3若曲线的一条切线与直线垂直,则的方程为A A B C D4函数,已知在时取得极值,则=(B)A.2B.3C.4D.55已知函数在区间上的最大值与最小值分别为,则326已知函数的图象在点处的切线方程是,则37设a为实数,函数 ()求f(x)的极值.()当a在什么范围内取值时,曲线y= f(x)轴仅有一个交点.解:(I)=321若=0,则=,=1当变化时,变化情况如下表:(,)(,1)1(1,+)+00+极大值极小值f(x)的极大值是,极小值是(II)函数由此可知,取足够大的正数时,有f(x)0,取足够小的负数时有f(x)0,所以曲线y= f(x)与轴至少有一个交点结合f(x)的单调性可知:当f(x)的极大值0即(1,+)时,它的极大值也大于0,因此曲线y= f(x)与轴仅有一个交点,它在(,)上。当(1,+)时,曲线y= f(x)与x轴仅有一个交点高考要考什么导数的几何意义:函数在点处的导数,就是曲线在点处的切线的斜率;(2)函数在点处的导数,就是物体的运动方程在时刻时的瞬时速度;2求函数单调区间的步骤:1)、确定f(x)的定义域,2)、求导数y,3)、令y0(y0时,f(x)在相应区间上是增函数;当y0时,f(x)在相应区间上是减函数3求极值常按如下步骤: 确定函数的定义域; 求导数; 求方程=0的根及导数不存在的点,这些根或点也称为可能极值点;通过列表法, 检查在可能极值点的左右两侧的符号,确定极值点。4设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大(小)值的步骤如下:(1)求f(x)在(a,b)内的极值,(2)将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。5最值(或极值)点必在下列各种点之中:导数等于零的点、导数不存在的点、端点。 突 破 重 难 点【范例1】已知函数在处取得极值. (1)讨论和是函数f(x)的极大值还是极小值;(2)过点作曲线y= f(x)的切线,求此切线方程.(1)解:,依题意,即 解得. . 令,得.若,则,故f(x)在上是增函数,f(x)在上是增函数.若,则,故f(x)在上是减函数.所以,是极大值;是极小值.(2)解:曲线方程为,点不在曲线上.设切点为,则点M的坐标满足.因,故切线的方程为注意到点A(0,16)在切线上,有 化简得,解得.所以,切点为,切线方程为.【点晴】过已知点求切线,当点不在曲线上时,求切点的坐标成了解题的关键.【范例2】(安徽文)设函数f(x)=-cos2x-4tsincos+4t2+t2-3t+4,xR,其中1,将f(x)的最小值记为g(t).()求g(t)的表达式;()诗论g(t)在区间(-1,1)内的单调性并求极值.解:(I)我们有 由于,故当时,达到其最小值,即 (II)我们有列表如下:极大值极小值由此可见,在区间和单调增加,在区间单调减小,极小值为,极大值为【点晴】本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力【范例2】已知函数在区间,内各有一个极值点(I)求的最大值;(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式解:(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,设两实根为(),则,且于是,且当,即,时等号成立故的最大值是16(II)解法一:由知在点处的切线的方程是,即,因为切线在点处空过的图象,所以在两边附近的函数值异号,则不是的极值点而,且若,则和都是的极值点所以,即,又由,得,故解法二:同解法一得因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在()当时,当时,;或当时,当时,设,则当时,当时,;或当时,当时,由知是的一个极值点,则,所以,又由,得,故变式:设函数在及时取得极值()求a、b的值;()若对于任意的,都有成立,求c的取值范围解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高级卫生专业技术资格-副高级(中药学)真题库-45
- 安徽江南十校2025届高三适应性调研考试物理试题含解析
- 课题申报书:家庭健康教育研究
- 课题申报书:基于数字化资源构建美术教学评价新模式探究
- 河南省信阳市2025年高考临考冲刺物理试卷含解析
- 课题申报书:基于价值共创的理工类高校导学思政协同育人机制与管理策略研究
- 2025届河北省邢台八中高考物理必刷试卷含解析
- 课题申报书:基础教育跨国吸引力研究:基于多国PISA媒体报道的分析
- 2025届甘肃省天水高中名校高三第一次模拟考试物理试题文试题
- 锅炉燃料-煤灰的熔融性(电站锅炉设备)
- 包装设计外文文献翻译最新译文
- 多芒寺阳塘仁波切生平简介(PPT)
- 治安管理课件新兴行业场所
- 中国铁路总公司《铁路技术管理规程》(普速铁路部分)
- HY∕T 122-2009 海洋倾倒区选划技术导则
- 《声门下吸引技术》PPT课件
- 幼儿园绘本故事PPT:《小红帽》
- 一年级下册数学6.6两位数减一位数、整十数(不退位减)人教版
- 成都体育学院全日制学术型硕士学位研究生培养方案
- 设计交底记录文稿(示例)
- 方向控制回路A
评论
0/150
提交评论