全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面上两点间的距离【学习导航】 知识网络 中点坐标 学习要求 1掌握平面上两点间的距离公式、中点坐标公式;2能运用距离公式、中点坐标公式解决一些简单的问题【课堂互动】自学评价(1)平面上两点之间的距离公式为 (2)中点坐标公式:对于平面上两点,线段的中点是,则【精典范例】例1:(1)求a(-1,3)、b(2,5)两点之间的距离;(2)已知a(0,10),b(a,-5)两点之间的距离为17,求实数a的值【解】(1)由两点间距离公式得ab=(2) 由两点间距离公式得,解得 a= 故所求实数a的值为8或-8例2:已知三角形的三个顶点,试判断的形状分析:计算三边的长,可得直角三角形【解】,,为直角三角形.点评:本题方法多样,也可利用、斜率乘积为-1,得到两直线垂直.例3:已知的顶点坐标为,求边上的中线的长和所在的直线方程分析:由中点公式可求出中点坐标,分别用距离公式、两点式就可求出的长和所在的直线方程【解】如图,设点点是线段的中点,即的坐标为由两点间的距离公式得因此,边上的中线的长为由两点式得中线所在的直线方程为,即点评:本题是中点坐标公式、距离公式的简单应用.例4已知是直角三角形,斜边的中点为,建立适当的直角坐标系,证明:证:如图,以的直角边所在直线为坐标轴,建立适当的直角坐标系,设两点的坐标分别为,是的中点,点的坐标为,即由两点间的距离公式得所以,追踪训练一1.式子可以理解为()两点(a,b)与(1,-2)间的距离 两点(a,b)与(-1,2)间的距离两点(a,b)与(1,2)间的距离两点(a,b)与(-1,-2)间的距离2.以a(3,-1), b(1,3)为端点的线段的垂直平分线的方程为 ()2x+y-5=0 2x+y+6=0 x-2y=0 x-2y-8=03. 线段ab的中点坐标是(-2,3),又点a的坐标是(2,-1),则点b的坐标是4已知点,若点在直线上,求取最小值解:设点坐标为,在直线上,的最小值为【选修延伸】对称性问题 例5: 已知直线,(1)求点关于对称的点;(2)求关于点对称的直线方程分析:由直线垂直平分线段,可设,有垂直关系及中点坐标公式可求出点;而关于点对称的直线必平行,因此可求出对称的直线方程【解】(1)设,由于,且中点在上,有,解得(2)在上任取一点,如,则关于点对称的点为所求直线过点且与平行,方程为,即听课随笔例6:一条光线经过点,射在直线上,反射后,经过点,求光线的入射线和反射线所在的直线方程分析:入射光线和反射光线所在直线都经过反射点,反射直线所在直线经过点关于直线的对称点【解】入射线所在的直线和反射线所在的直线关于直线对称,设点关于直线对称点的坐标为,因此的中点在直线上,且所在直线与直线垂直,所以,解得反射光线经过两点,反射线所在直线的方程为由得反射点入射光线经过、两点,入射线所在直线的方程为点评:求点关于直线的对称点,通常都是根据直线垂直于直线,以及线段的中点在直线上这两个关系式列出方程组,然后解方程组得对称点的坐标思维点拔:平面上两点间的距离公式为,线段中点坐标为.平面上两点间距离公式及中点坐标公式有着广泛的应用,如:计算图形面积,判断图形形状等.同时也要注意掌握利用中点坐标公式处理对称性问题.追踪训练二1点(-1,2)关于直线x+y-3=0的对称点的坐 标为 ( )(1,4) (-1,4) (1,-4) (-1,-4)2直线3x-y-2=0关于x轴对称的直线方程为3已知点,试求点的坐标,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农民公寓买卖合同范例
- 丧葬补偿合同范例
- 个人房源出租合同范例
- 中信担保贷款合同模板
- 假期找工作兼职合同范例
- 基坑沉降观测合同范例
- 上海专业团膳服务合同范例
- 专修设计合同范例
- 土方租赁合同范例
- 医院柔性人才合同范例
- 中药材技术创新中心的可行性研究报告
- 有机合成化学(山东联盟)知到章节答案智慧树2023年青岛科技大学
- 商标法题库1(答案)
- TMF自智网络白皮书4.0
- 电视剧《国家孩子》观影分享会PPT三千孤儿入内蒙一段流淌着民族大爱的共和国往事PPT课件(带内容)
- 所水力除焦设备介绍
- 改革开放英语介绍-课件
- pet考试历届真题和答案
- 《企业员工薪酬激励问题研究10000字(论文)》
- 大学英语三级B真题2023年06月
- GB/T 7909-2017造纸木片
评论
0/150
提交评论