已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
虹口区2014学年第一学期高三期终教学质量监测试卷2015.1.8一、填空题(本大题满分56分)本大题共14题,只要求在答题纸相应题号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、椭圆的焦距为 .2、在的展开式中,各项系数之和为 .3、若复数满足(为虚数单位),则复数 .4、若正实数满足32,则的最小值为 .5、行列式的最小值为 .6、在中,角所对的边分别为,若,则 .7、若则方程的所有解之和等于 .8、若数列为等差数列,且,则 .9、设等比数列的公比为,前项和为,若成等差数列,则 .10、已知是分别经过两点的两条平行直线,当之间的距离最大时,直线的方程是 .11、若抛物线上的两点、到焦点的距离之和为6,则线段的中点到轴的距离为 .12、10件产品中有8件正品,2件次品,从中任取3件,则恰好有一件次品的概率为 .(结果用最简分数表示)13、右图是正四面体的平面展开图,分别为的中点,则在这个正四面体中,与所成角的大小为 .14、右图为函数的部分图像,是它与轴的两个交点,分别为它的最高点和最低点,是线段的中点,且,则函数的解析式为 .二、选择题(本大题共4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应题号上,将所选答案的代号涂黑,选对得5分,否则一律零分.15、设全集,则 ( ).A.B.C.D. 16、设均为非零向量,下列四个条件中,使成立的必要条件是 ( ).A.B.C.D. 且17、关于曲线,给出下列四个命题: 曲线关于原点对称; 曲线关于直线对称曲线围成的面积大于 曲线围成的面积小于上述命题中,真命题的序号为 ( )A. B. C. D. 18、若直线与曲线有四个不同交点,则实数的取值范围是 ( ).A.B.C.D. 三、解答题(本大题共5题,满分74分)解答下列各题必须在答题纸的规定区域内写出必要步骤.19、(本题满分12分)已知,求的值20、(本题满分14分)本题共2个小题,每小题7分一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的,设球的半径为,圆锥底面半径为.(1)试确定与的关系,并求出较大圆锥与较小圆锥的体积之比;(2)求出两个圆锥的体积之和与球的体积之比.21、(本题满分14分)本题共2小题,第1小题6分,第2小题8分已知函数和的图像关于原点对称,且(1)求函数的解析式;(2)若在上是增函数,求实数的取值范围.22、(本题满分16分)本题共3小题,第1小题5分,第2小题5分,第3小题6分.已知各项均不为零的数列的前项和为,且,其中.(1)求证:成等差数列;(2)求证:数列是等差数列;(3)设数列满足,且为其前项和,求证:对任意正整数,不等式恒成立.23、(本题满分18分)本题共3个小题,第1小题5分,第2小题7分,第3小题6分.已知为为双曲线的两个焦点,焦距,过左焦点垂直于轴的直线,与双曲线相交于两点,且为等边三角形.(1)求双曲线的方程;(2)设为直线上任意一点,过右焦点作的垂线交双曲线与两点,求证:直线平分线段(其中为坐标原点);(3)是否存在过右焦点的直线,它与双曲线的两条渐近线分别相交于两点,且使得的面积为?若存在,求出直线的方程;若不存在,请说明理由.2015年虹口区高三一模数学试卷理科(参考答案)一填空题1. ; 2. 1; 3. ; 4. 16; 5. ; 6. ; 7. ; 8. ; 9. ; 10. ; 11. 3; 12. ; 13. ; 14. ;二选择题15. C; 16. B; 17. D; 18. A;三解答题19. 解:,在第一象限,; ; ;20. (1)解:,;(2)解:;21. (1)解:;(2)解:, 当,即时,对称轴,; 当,即时,符合题意,; 当,即时,对称轴,; 综上,;22. (1)解: ; ;得,得证;(2)解:由,得,结合第(1)问结论,即可得是等差数列;(3)解:根据题意,; 要证,即证; 当时,成立; 假设当时,成立; 当时,; 要证,即证,展开后显然成立, 所以对任意正整数,不等式恒成立;23. (1),等边三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师个人心得体会15篇
- 电教中心上半年工作总结
- 学生实习个人工作总结
- 2024年度个人与企业合作的旅游产业规划与发展服务合同3篇
- 书籍《哈利·波特》读书心得10篇
- 2024年企业内部管理系统软件维护与流程优化合同2篇
- 毕业生求职信锦集五篇
- 2024年度绿化工程生态修复材料采购合同3篇
- 2024-2025学年浙江省温州二中九年级(上)月考数学试卷(12月份)
- 六年级语文上册语文园地三
- 网络安全技能竞赛(CTF)考试题及答案
- 糖尿病健康教育预防糖尿病课件
- 非金属矿绿色矿山建设规范DB41-T 1666-2018
- 二十届三中全会精神知识竞赛试题及答案
- 纪检监察业务培训心得总结
- 消防控制室管理协议书范本
- Module 10 Unit 2 Eat vegetables every day(教学设计)-2024-2025学年外研版(一起)英语四年级上册
- 2024-2030年仔猪饲料行业市场现状供需分析及投资评估规划分析研究报告
- 农村化粪池清掏服务投标方案(技术方案)
- 第9课《创新增才干》第1框《创新是引领发展的第一动力》【中职专用】中职思想政治《哲学与人生》(高教版2023基础模块)
- 2024年部编新改版语文小学一年级上册第二单元复习课教案
评论
0/150
提交评论