响应面回归设计.ppt_第1页
响应面回归设计.ppt_第2页
响应面回归设计.ppt_第3页
响应面回归设计.ppt_第4页
响应面回归设计.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

回归设计 回归设计概述回归模型因素水平编码Box Benhken设计二次回归正交设计 概述 回归设计也称为响应面设计 是一种通过少量试验 获得数据 估计参数 有效地建立试验指标和连续变量之间的定量关系的方法 它是由英国统计学家G Box在20世纪50年代初真对化工生产提出的 后来这一方法得到了广泛的应用 概述 广泛应用于化工 钢铁 机械 制药 农业 食品等领域 根据建立的回归方程的次数不同 回归设计有一次回归设计 二次回归设计 二次回归的正交试验设计是用于寻求最佳工艺 最佳配方和建立生产过程数学模型的很好方法 回归模型 响应面分析 ResponseSurfaceAnalysis 主要包括回归方程的估计和检验 模型欠拟检验 回归参数的估计和检验 因素效应的检验 模型决定系数的计算 最优水平组合的估计及其附近的响应面特征 回归模型 1 二次响应面 多元二次多项式 模型描述 Y 响应变量 xj 第j个自变量 正态随机误差 0 回归截距 j jj jj 回归系数 回归模型 三元二次响应面模型描述 Y 响应变量 x 第j个自变量 正态随机误差 0 回归截距 回归系数 回归模型 二次响应面模型的矩阵描述 Y 响应变量 X 结构矩阵 正态随机误差 n 数据组数 0 nx1的元素全是0的向量 回归模型 2 回归系数的最小二乘估计 应满足以下正规方程 当 X X 1存在时 解得 估计b H0 H1 不全为0 回归模型 3 回归方程的显著性检验 记 回归模型 有方和分解式 其中 残差平方和回归平方和 自由度自由度 回归模型 当H0为真时 有 给定显著性水平 则拒绝域为 接收H0拒绝H0 接受H1 回归模型 4 失拟检验 在某些点上有重复试验数据 可以对Y的期望是否是x线性函数进行检验 残差平方和SE分解为组内 误差 平方和Se与组间 失拟 平方和SLf 即 回归模型 式中 自由度自由度 H0 H1 回归模型 假设 统计量 当拒绝H0时 需要寻找原因 改变模型否则认为线性回归模型合适 可以将Se与SLf合并作为SE检验方程是否显著 回归模型 5 回归系数的检验 对每一个回归系数进行F或t检验 给定的显著性水平 当时拒绝假设H0j 即认为 0j显著不为零 否则认为 0j为零 可以将对应的变量逐一从回归方程中删除 Cij为 X X 1的第j 1个对角元是模型 2的无偏估计 回归模型 式中 因素水平编码 在回归问题中各因子的量纲不同 其取值的范围也不同 为了数据处理的方便 对所有的因子作一个线性变换 使所有因子的取值范围都转化为中心在原点的一个 立方体 中 这一变换称为对因子水平的编码 因素水平编码 设计变量初选试验范围zj的最大值编码xjM为1 最小值编码xjm为 1 中间值编码xj0为0 因素水平编码 三因素响应面设计的试验点及分布 Box Benhken设计 由Box Behnken提出的中心组合设计是一种较常用的回归设计法 适用于2至5个因素的优化实验 Box Behnken设计首先假定实验范围内存在二次项 其试验点的选取为编码立方体的每条棱的中点 Box Benhken设计 例题 对超高压杀灭枯草芽孢杆菌效果Y的研究发现 温度 压力 保压时间是灭活枯草芽孢杆菌显著影响因子 研究结果表明杀灭6个数量级的枯草芽孢杆菌的杀菌条件 温度为 X1 31 10 59 03 压力为X2 235 23 562 21MPa 保压时间为X3 10 11 19 53min 试分析最优杀菌工艺参数 Box Benhken设计 题解 本试验采用Box Behnken模型 以压力X1 温度X2 保压时间X3三个外界因子为自变量 并以 1 0 1分别代表自变量的高 中 低水平 对自变量进行编码 超高压杀灭菌的数量级Y为响应值 Y log10Nt N0 即经超高压作用后枯草芽孢杆菌死亡的数量级 Nt为超高压处理后1ml菌液中的活菌数 N0为对照1ml菌液中的活菌数 Box Benhken设计 实验因素水平及编码表 Box Benhken设计 实验设计与结果表 二次回归正交设计 应用二次回归正交设计法 所得的回归系数的估计之间相互独立 因此删除某些因子时不会影响其它的回归系数的估计 从而很容易写出所有系数为显著的回归方程 二次回归正交设计的试验点由正交点 主轴点和中心点组成 二次回归正交设计 两个变量的试验点组合方案 二次回归正交设计 二次回归正交设计的参数 值表 二次回归正交设计 例题 在研究在某提纯工艺中 发现杂质Y的产生量受温度 压力 提取时间显著影响 研究结果表明这种提纯工艺的的工作条件 其温度为 X1 50 90 压力为X2 4 8MPa 提取时间为X3 1 3hour

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论