




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考二次函数中考压轴题【2018 成都中考】如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为、是抛物线上位于对称轴右侧的一点,若,且与面积相等,求点的坐标;(3)若在轴上有且仅有一点,使,求的值. 解:(1)由题可得:解得,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,解得,.同理,., (在下方),即,.,.在上方时,直线与关于对称.,.,.综上所述,点坐标为;.(3)由题意可得:.,即.,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,即,.,.【2017成都中考】如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180,得到新的抛物线C(1)求抛物线C的函数表达式;(2)若抛物线C与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C上的对应点P,设M是C上的动点,N是C上的动点,试探究四边形PMPN能否成为正方形?若能,求出m的值;若不能,请说明理由解:(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=,抛物线C的函数表达式为y=x2+4(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为y=(xm)24,由,消去y得到x22mx+2m28=0,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2m2,满足条件的m的取值范围为2m2(3)结论:四边形PMPN能成为正方形理由:1情形1,如图,作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,M(m+2,m2),点M在y=x2+4上,m2=(m+2)2+4,解得m=3或3(舍弃),m=3时,四边形PMPN是正方形情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),把M(m2,2m)代入y=x2+4中,2m=(m2)2+4,解得m=6或0(舍弃),m=6时,四边形PMPN是正方形【2016成都中考】如图,在平面直角坐标系xOy中,抛物线y=a(x+1)23与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由解:(1)抛物线与y轴交于点C(0,)a3=,解得:a=,y=(x+1)23当y=0时,有(x+1)23=0,x1=2,x2=4,A(4,0),B(2,0)(2)A(4,0),B(2,0),C(0,),D(1,3)S四边形ABCD=SADH+S梯形OCDH+SBOC=33+(+3)1+2=10从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:当直线l边AD相交与点M1时,则S=10=3,3(y)=3y=2,点M1(2,2),过点H(1,0)和M1(2,2)的直线l的解析式为y=2x+2当直线l边BC相交与点M2时,同理可得点M2(,2),过点H(1,0)和M2(,2)的直线l的解析式为y=x综上所述:直线l的函数表达式为y=2x+2或y=x(3)设P(x1,y1)、Q(x2,y2)且过点H(1,0)的直线PQ的解析式为y=kx+b,k+b=0,b=k,y=kx+k由,+(k)xk=0,x1+x2=2+3k,y1+y2=kx1+k+kx2+k=3k2,点M是线段PQ的中点,由中点坐标公式的点M(k1,k2)假设存在这样的N点如图,直线DNPQ,设直线DN的解析式为y=kx+k3由,解得:x1=1,x2=3k1,N(3k1,3k23)四边形DMPN是菱形,DN=DM,(3k)2+(3k2)2=()2+()2, 整理得:3k4k24=0,k2+10,3k24=0, 解得k=,k0,k=,P(31,6),M(1,2),N(21,1)PM=DN=2,PMDN,四边形DMPN是平行四边形,DM=DN,四边形DMPN为菱形,以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(21,1)【2015成都中考】如图,在平面直角坐标系xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由解:(1)A(1,0)直线l经过点A,0kb,bkykxk令ax 22ax3akxk,即ax 2( 2ak )x3ak0CD4AC,点D的横坐标为43 14,ka直线l的函数表达式为yaxa(2)过点E作EFy轴,交直线l于点F设E(x,ax 22ax3a),则F(x,axa)EFax 22ax3a( axa )ax 23ax4aSACE SAFE SCFE ( ax 23ax4a )( x1 ) ( ax 23ax4a )x ( ax 23ax4a ) a( x )2 aACE的面积的最大值为 aACE的面积的最大值为 a ,解得a (3)令ax 22ax3aaxa,即ax 23ax4a0解得x11,x24D(4,5a)yax 22ax3a,抛物线的对称轴为x1设P(1,m)若AD是矩形的一条边,则Q(4,21a)m21a5a26a,则P(1,26a)四边形ADPQ为矩形,ADP90AD 2PD 2AP 25 2( 5a )2( 14 )2( 26a5a )2( 11 )2( 26a )2即a 2 ,a0,a P1(1, )若AD是矩形的一条对角线则线段AD的中点坐标为( ,),Q(2,3a)m5a( 3a )8a,则P(1,8a)四边形APDQ为矩形,APD90AP 2PD 2AD 2( 11 )2( 8a )2( 14 )2( 8a5a )25 2( 5a )2即a 2 ,a0,a P2(1,4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形点P的坐标为(1, )或(1,4)【2014成都中考】如图,已知抛物线(为常数,且)与轴从左至右依次交于A,B两点,与轴交于点C,经过点B的直线与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?解:(1)抛物线y=(x+2)(x4),令y=0,解得x=2或x=4,A(2,0),B(4,0)直线y=x+b过点B(4,0),4+b=0,解得b=,直线BD解析式为:y=x+当x=5时,y=3,D(5,3)点D(5,3)在抛物线y=(x+2)(x4)上,(5+2)(54)=3,k=(2)由抛物线解析式,令x=0,得y=k,C(0,k),OC=k因为点P在第一象限内的抛物线上,所以ABP为钝角因此若两个三角形相似,只可能是ABCAPB或ABCABP若ABCAPB,则有BAC=PAB,如答图21所示设P(x,y),过点P作PNx轴于点N,则ON=x,PN=ytanBAC=tanPAB,即:,y=x+kD(x,x+k),代入抛物线解析式y=(x+2)(x4),得(x+2)(x4)=x+k,整理得:x26x16=0,解得:x=8或x=2(与点A重合,舍去),P(8,5k)ABCAPB,即,解得:k=若ABCABP,则有ABC=PAB,如答图22所示与同理,可求得:k=综上所述,k=或k=(3)由(1)知:D(5,3),如答图22,过点D作DNx轴于点N,则DN=3,ON=5,BN=4+5=9,tanDBA=,DBA=30过点D作DKx轴,则KDF=DBA=30过点F作FGDK于点G,则FG=DF由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,t=AF+FG,即运动时间等于折线AF+FG的长度由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段过点A作AHDK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点A点横坐标为2,直线BD解析式为:y=x+,y=(2)+=2,F(2,2)综上所述,当点F坐标为(2,2)时,点M在整个运动过程中用时最少【2013成都中考】在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限。(1)如图,若该抛物线过A,B两点,求抛物线的函数表达式;(2)平(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q. i)若点M在直线AC下方,且为平移前(1)中的抛物线上点,当以M,P,Q三点为顶点的三角形是等腰三角形时,求出所有符合条件的M的坐标;ii)取BC的中点N,连接NP,BQ。试探究是否存在最大值?若存在,求出该最大值;所不存在,请说明理由。解:(1)等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3)点B的坐标为(4,1)抛物线过A(0,1),B(4,1)两点,解得:b=2,c=1,抛物线的函数表达式为:y=x2+2x1(2)方法一:i)A(0,1),C(4,3),直线AC的解析式为:y=x1设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上点P在直线AC上滑动,可设P的坐标为(m,m1),则平移后抛物线的函数表达式为:y=(xm)2+m1解方程组:,解得,P(m,m1),Q(m2,m3)过点P作PEx轴,过点Q作QFy轴,则PE=m(m2)=2,QF=(m1)(m3)=2PQ=AP0若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:当PQ为直角边时:点M到PQ的距离为(即为PQ的长)由A(0,1),B(4,1),P0(2,1)可知,ABP0为等腰直角三角形,且BP0AC,BP0=如答图1,过点B作直线l1AC,交抛物线y=x2+2x1于点M,则M为符合条件的点可设直线l1的解析式为:y=x+b1,B(4,1),1=4+b1,解得b1=5,直线l1的解析式为:y=x5解方程组,得:,M1(4,1),M2(2,7)当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为如答图2,取AB的中点F,则点F的坐标为(2,1)由A(0,1),F(2,1),P0(2,1)可知:AFP0为等腰直角三角形,且点F到直线AC的距离为过点F作直线l2AC,交抛物线y=x2+2x1于点M,则M为符合条件的点可设直线l2的解析式为:y=x+b2,F(2,1),1=2+b2,解得b2=3,直线l2的解析式为:y=x3解方程组,得:,M3(1+,2+),M4(1,2)综上所述,所有符合条件的点M的坐标为:M1(4,1),M2(2,7),M3(1+,2+),M4(1,2)方法二:A(0,1),C(4,3),lAC:y=x1,抛物线顶点P在直线AC上,设P(t,t1),抛物线表达式:,lAC与抛物线的交点Q(t2,t3),一M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t1),当M为直角顶点时,M(t,t3),t=1,M1(1+,2),M2(1,2),当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90而成,将点Q(t2,t3)平移至原点Q(0,0),则点P平移后P(2,2),将点P绕原点顺时针旋转90,则点M(2,2),将Q(0,0)平移至点Q(t2,t3),则点M平移后即为点M(t,t5),t1=4,t2=2,M1(4,1),M2(2,7),当P为直角顶点时,同理可得M1(4,1),M2(2,7),综上所述,所有符合条件的点M的坐标为:M1(4,1),M2(2,7),M3(1+,2+),M4(1,2)ii)存在最大值理由如下:由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值如答图2,取点B关于AC的对称点B,易得点B的坐标为(0,3),BQ=BQ连接QF,FN,QB,易得FNPQ,且FN=PQ,四边形PQFN为平行四边形NP=FQNP+BQ=FQ+BQFB=当B、Q、F三点共线时,NP+BQ最小,最小值为的最大值为=【2012成都中考】在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线(1)求直线及抛物线的函数表达式;(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;(3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由并探究:若设Q的半径为,圆心在抛物线上运动,则当取何值时,Q与两坐轴同时相切?解:(1)经过点(3,0),0=+m,解得m=,直线解析式为,C(0,)抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(3,0),另一交点为B(5,0),设抛物线解析式为y=a(x+3)(x5),抛物线经过C(0,),=a3(5),解得a=,抛物线解析式为y=x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则ACEF且AC=EF如答图1,(i)当点E在点E位置时,过点E作EGx轴于点G,ACEF,CAO=EFG,又,CAOEFG,EG=CO=,即yE=,=xE2+xE+,解得xE=2(xE=0与C点重合,舍去),E(2,),SACEF=;(ii)当点E在点E位置时,过点E作EGx轴于点G,同理可求得E(+1,),SACEF=(3)要使ACP的周长最小,只需AP+CP最小即可如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度)B(5,0),C(0,),直线BC解析式为y=x+,xP=1,yP=3,即P(1,3)令经过点P(1,3)的直线为y=kx+3k,y=kx+3k,y=x2+x+,联立化简得:x2+(4k2)x4k3=0,x1+x2=24k,x1x2=4k3y1=kx1+3k,y2=kx2+3k,y1y2=k(x1x2)根据两点间距离公式得到:M1M2=M1M2=4(1+k2)又M1P=;同理M2P=M1PM2P=(1+k2)=(1+k2)=(1+k2)=4(1+k2)M1PM2P=M1M2,=1为定值 【2011成都中考】如图,在平面直角坐标系中,ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上已知,ABC的面积,抛物线经过A、B、C三点。 (1)求此抛物线的函数表达式; (2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长; (3)在抛物线上是否存在异于B、C的点M,使MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由解:(1)|OA|:|OB|=1:5,|OB|=|OC|,设OA=m,则OB=OC=5m,AB=6m,由ABC=ABOC=15,得6m5m=15,解得m=1(舍去负值),A(1,0),B(5,0),C(0,5),设抛物线解析式为y=a(x+1)(x5),将C点坐标代入,得a=1,抛物线解析式为y=(x+1)(x5),即y=x24x5;(2)设E点坐标为(m,m24m5),抛物线对称轴为x=2,由2(m2)=EH,得2(m2)=(m24m5)或2(m2)=m24m5,解得m=1或m=3,m2,m=1+或m=3+,边长EF=2(m2)=22或2+2;(3)存在由(1)可知OB=OC=5,OBC为等腰直角三角形,直线BC解析式为y=x5,依题意,直线y=x+9或直线y=x19与BC的距离为7,联立,解得或,M点的坐标为(2,7),(7,16)【2010成都中考】如图,在平面直角坐标系xOy中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C以直线x=1为对称轴的抛物线 ( 为常数,且0)经过A,C两点,并与x轴的正半轴交于点B (1)求的值及抛物线的函数表达式; (2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由; (3)若P是抛物线对称轴上使ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于 ,两点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级上册第1章 有理数1.6 有理数的乘方教案
- 冀教版小学信息技术四年级上册《第4课 我的作品排行榜》教学设计
- 九年级道德与法治下册 第1单元 我们共同的世界 第2课 构建人类命运共同体 第1框 推动和平与发展教学设计 新人教版
- 九年级化学下册 第7单元 常见的酸和碱 到实验室去 探究酸和碱的化学性质教学设计 (新版)鲁教版
- 初中信息技术浙教版八年级下册第十五课 添加 ActionScript 代码教案设计
- 九年级英语下册 Module 2 Environmental problems Unit 4 Natural disasters教学设计5 牛津深圳版
- 二年级下册道德与法治教学设计 北师大版
- 内蒙古鄂尔多斯市东胜区九年级化学上册 第二章 空气、物质的构成 2.3 构成物质的微粒(II)-原子和离子(2)教学设计 (新版)粤教版
- 安全环保消防培训
- 大学生科研培训专题讲座
- 国际物流专员聘用协议
- 《探究杠杆的平衡条件》说课稿(全国实验说课大赛获奖案例)
- 2024年江西省初中学业水平考试数学试题卷
- 海南红塔卷烟有限责任公司招聘考试试题及答案
- 七年级数学人教版下册第二单元测试卷-实数
- 2024年海南省财金集团有限公司招聘笔试冲刺题(带答案解析)
- SYT5405-2019酸化用缓蚀剂性能试验方法及评价指标
- 固体表面的吸附
- 内镜下内痔套扎治疗
- (正式版)JBT 14581-2024 阀门用弹簧蓄能密封圈
- 医疗器械销售公司介绍
评论
0/150
提交评论