小学数学2011版本小学四年级三角形教学设计.docx_第1页
小学数学2011版本小学四年级三角形教学设计.docx_第2页
小学数学2011版本小学四年级三角形教学设计.docx_第3页
小学数学2011版本小学四年级三角形教学设计.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“三角形的三边关系”教学设计教学内容:人教版小学数学四年级下册第84页研究背景:人教版四年级下册第五单元“三角形边的认识”中的例3三角形的三边关系。该课时是在学生初步了解三角形的定义,三角形的稳定性的基础上,进一步探索三角形的又一特征:即三角形的任意两边的和大于第三边。加深学生对三角形的认识,同时为今后学生学习三角形和四边形的联系和区别,甚至为中学学习勾股定理等知识打下基础。这个知识点原来在初中进行学习,但新课改后下放到小学四年级。10岁的孩子能接受吗?“任意”这个词对很多数学生来说是比较抽象、难以理解的,通过怎样的教学才能让学生对三角形三边之间的大小关系有更深的理解?这是我课前挺担心的问题。通过查阅资料及充分考虑学生身心的发展特征,我设计了如下基本思路:学生对图形性质的体验是建立在数学实践活动中进行的,我的课堂将为孩子们提供大量观察、操作、思考、想象、交流等活动,使学生在有挑战性的、充满想象和富含思考的过程中,体验三角形的任意两边的和大于第三边这个性质,并同时积累数学活动经验,发展空间观念。教学目标:1、通过剪一剪、拼一拼、算一算等实验活动,探索并发现三角形任意两边的和大于第三边。2、使学生经历实验过程:猜测实验验证应用,感受数学思想在生活、学习中的应用,并在实验过程中培养学生自主探索、合作交流的能力。3、通过学生动手操作,想象猜测,进一步发展空间观念,提高观察能力和动手操作的能力。教学重、难点:引导学生想象、猜测、实验,研究什么样的三条线段能围成三角形,发现三角形的三边关系。教学准备:学生:每桌准备吸管各一根,剪刀,直尺,活动记录表一张教师:人教版教材,课件教学过程:一、生活引入:吸管里有数学奥秘,今天我们就用吸管来研究一些数学问题。【新课程很强调让学生在情境中学习、探究,所以很多知识都是放在具体的主题图中进行的。而且教师在对教材的再创造的过程中,往往创设了具体生动地生活情境。但在这些情境中也会夹杂着众多的非数学的信息,在很大程度上会影响学生的知识取向,影响教师课堂把握。所以,我在这个环节设计时,重点考虑怎样增强课堂教学活动的数学性,减少非数学信息对课堂教学的影响。所以就用操作材料吸管直接引入。】二、探究发现1学生活动(1)用一根吸管剪成整厘米数的三段,用毛线串一串。(2)在记录表上记录好它们的长度及串连的结果,否围成一个三角形,能打“”,不能打“”。2学生汇报长度(厘米)能否围成三角形比较三边关系【“任意的三根吸管能否围成一个三角形?”,选用针线和吸管进行操作,串连方便,用手一掐就知道能不能围成三角形,这样不仅便于操作,还便于交流反馈时一目了然:能拼成三角形、不能拼成三角形、两条线段成直线并与第三条线重合。你想剪怎样的三段,数据材料来自学生自己提供的,也使材料的可信性增强。整个活动简单,既能培养学生的空间想像能力,又培养了学生的动手能力,同时对三角形三边关系有了比较形象的认识。教学效果好。学生能操作又会操作,数学性和探索性都很强。】3.小组讨论请同学们利用拼摆的结果和吸管的长度数据来比较三条吸管的关系,想一想,手里的吸管为什么有的能拼成,有的不能拼成?(1)分析“围不成”的原因。学生演示讨论投影演示:一种是合拢了,但是是“平的”;另一种是完全没合拢【在实验操作中,学生剪吸管是有一定误差的。这时用动态课件演示,使学生清晰地明白两边之和等于第三边是不能围成三角形的,突破了本节课的重、难点。彻底改变传统教学中的凭空想象、似是而非、难以理解之苦。产生特有的教学效果。】(2)分析“围成”的原因。讨论:要能围成三角形须满足什么条件?概括总结:举例验证【这里安排独立操作思考很有必要性,紧接着就让学生马上讨论,这为后面揭示两边之和必须大于第三边提供一个很重要的思维基础,应该先思考再讨论才有价值,要体现讨论的必要性,解决不了的问题,有必要接受同学间的相互帮助。有了充分的思维碰撞,讨论才会让结论显得比较真实。】三、拓展应用1、判断下面的每组小棒能否围成三角形。判断下面的每组小棒能否围成三角形。想象能拼成怎样的三角形。(电脑演示)简介勾股定理的有关知识。【这是书上四题判断题,我按照自己的应用意图,从易到难重新编排,适度拓展,一题多用,从能否围成三角形出发,穿插了直角三角形、等边三角形、等腰三角形、勾股定理、图形与代数、区间等等一系列代数与几何的数学知识。追问三根小棒如能围成三角形会是一个怎样的三角形,让学生先想象,再课件演示,这有助学生空间观念的形成。】2、应用“三角形的三边关系”解释生活中的现象。【学生用选择两条较短的边或者两个较小的数据相加再与第三个边比较,可以迅速的判断能否组成三角形,这是运用三角形三边的关系来判断能否拼成三角形的一个简洁的方法,也是这节课的亮点。学生是聪明的,也是敏感的:在这共同探讨的活动中,因为有展示自己思维的空间和时间,也因为有同伴之间的相互启发,可以看到学生对三角形三边间的关系已经是非常清楚了。】3、有2厘米、3厘米、5厘米、7厘米、8厘米五种不同长度的小棒,你能围成哪些三角形?(机动)四、反思回顾今天这节课学习了什么,你是怎样学会的?教后反思:在信息如此畅通的今天,为我总想站在“巨人”的肩膀上提升自己的课堂教学提供了可能。在课前,我也参考了包括华应龙、丁杭缨等名师在内的无数个教案。但最终没有生搬硬套,摆脱了思想上的禁锢,上出了符合我自己“班情、学情 ”的一节好课。总结成功的经验,本节课有三大亮点:1.教学设计基于学生的实际本节课与一般的教学设计从步骤看最大的不同是:先研究“三角形边的关系”得出“较短两边之和大于第三边”,经过讨论验证后用“任意”代替“较短”,条理非常清晰。我个人觉得:对于学生来说,围绕“任意的三根小棒能否围成一个三角形?”这个问题自己操作,发现有的能围成,有的围不成。并进一步在操作之中探究什么情况下不能围成三角形,为什么?初步直观感知到的三条边之间的关系确实是“较短两边之和大于第三边”,而不是书中所述的“三角形任意两边的和大于第三边”。用学生自己的话说;在判断三条线段能否组成三角形时,用“较短两边之和大于第三边”,确实十分的方便快捷。因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边,这也就更进一步说明这个三角形的任意两边之和大于第三边。这也为“任意”这个词做了最好的解释。2.材料选择便于学生操作选用针线和吸管进行操作,串连方便,用手一掐就知道能不能围成三角形,这样不仅便于操作,还便于交流反馈时一目了然,不会造成没必要的争议:能拼成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论