neuralnets-2012-001 06_Lecture6 01_Overview_of_mini-batch_gradient_descent_第1页
neuralnets-2012-001 06_Lecture6 01_Overview_of_mini-batch_gradient_descent_第2页
neuralnets-2012-001 06_Lecture6 01_Overview_of_mini-batch_gradient_descent_第3页
neuralnets-2012-001 06_Lecture6 01_Overview_of_mini-batch_gradient_descent_第4页
neuralnets-2012-001 06_Lecture6 01_Overview_of_mini-batch_gradient_descent_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NeuralNetworksforMachineLearningLecture6aOverviewofmini batchgradientdescent GeoffreyHintonwithNitishSrivastavaKevinSwersky Reminder Theerrorsurfaceforalinearneuron Theerrorsurfaceliesinaspacewithahorizontalaxisforeachweightandoneverticalaxisfortheerror Foralinearneuronwithasquarederror itisaquadraticbowl Verticalcross sectionsareparabolas Horizontalcross sectionsareellipses Formulti layer non linearnetstheerrorsurfaceismuchmorecomplicated Butlocally apieceofaquadraticbowlisusuallyaverygoodapproximation E w1 w2 Convergencespeedoffullbatchlearningwhentheerrorsurfaceisaquadraticbowl Goingdownhillreducestheerror butthedirectionofsteepestdescentdoesnotpointattheminimumunlesstheellipseisacircle Thegradientisbiginthedirectioninwhichweonlywanttotravelasmalldistance Thegradientissmallinthedirectioninwhichwewanttotravelalargedistance Evenfornon linearmulti layernets theerrorsurfaceislocallyquadratic sothesamespeedissuesapply Howthelearninggoeswrong Ifthelearningrateisbig theweightssloshtoandfroacrosstheravine Ifthelearningrateistoobig thisoscillationdiverges Whatwewouldliketoachieve Movequicklyindirectionswithsmallbutconsistentgradients Moveslowlyindirectionswithbigbutinconsistentgradients E w Stochasticgradientdescent Ifthedatasetishighlyredundant thegradientonthefirsthalfisalmostidenticaltothegradientonthesecondhalf Soinsteadofcomputingthefullgradient updatetheweightsusingthegradientonthefirsthalfandthengetagradientforthenewweightsonthesecondhalf Theextremeversionofthisapproachupdatesweightsaftereachcase Itscalled online Mini batchesareusuallybetterthanonline Lesscomputationisusedupdatingtheweights Computingthegradientformanycasessimultaneouslyusesmatrix matrixmultiplieswhichareveryefficient especiallyonGPUsMini batchesneedtobebalancedforclasses Twotypesoflearningalgorithm Ifweusethefullgradientcomputedfromallthetrainingcases therearemanycleverwaystospeeduplearning e g non linearconjugategradient Theoptimizationcommunityhasstudiedthegeneralproblemofoptimizingsmoothnon linearfunctionsformanyyears Multilayerneuralnetsarenottypicaloftheproblemstheystudysotheirmethodsmayneedalotofadaptation Forlargeneuralnetworkswithverylargeandhighlyredundanttrainingsets itisnearlyalwaysbesttousemini batchlearning Themini batchesmayneedtobequitebigwhenadaptingfancymethods Bigmini batchesaremorecomputationallyefficient Abasicmini batchgradientdescentalgorithm Guessaninitiallearningrate Iftheerrorkeepsgettingworseoroscillateswildly reducethelearningrate Iftheerrorisfallingfairlyconsistentlybutslowly increasethelearningrate Writeasimpleprogramtoautomatethiswayofadjustingthelearningrate Towardstheendofmini batchlearningitnearlyalwayshelpstoturndownthelearningrate Thisremovesfluctuationsinthefinalweightscausedbythevariationsbetweenmini batches Turndownthelearningratewhentheerrorstopsdecreasing Usetheerroronaseparatevalidationset NeuralNetworksforMachineLearningLecture6bAbagoftricksformini batchgradientdescent GeoffreyHintonwithNitishSrivastavaKevinSwersky Becarefulaboutturningdownthelearningrate Turningdownthelearningratereducestherandomfluctuationsintheerrorduetothedifferentgradientsondifferentmini batches Sowegetaquickwin Butthenwegetslowerlearning Don tturndownthelearningratetoosoon error epoch reducelearningrate Initializingtheweights Iftwohiddenunitshaveexactlythesamebiasandexactlythesameincomingandoutgoingweights theywillalwaysgetexactlythesamegradient Sotheycanneverlearntobedifferentfeatures Webreaksymmetrybyinitializingtheweightstohavesmallrandomvalues Ifahiddenunithasabigfan in smallchangesonmanyofitsincomingweightscancausethelearningtoovershoot Wegenerallywantsmallerincomingweightswhenthefan inisbig soinitializetheweightstobeproportionaltosqrt fan in Wecanalsoscalethelearningratethesameway Shiftingtheinputs Whenusingsteepestdescent shiftingtheinputvaluesmakesabigdifference Itusuallyhelpstotransformeachcomponentoftheinputvectorsothatithaszeromeanoverthewholetrainingset Thehypberbolictangent whichis2 logistic 1 produceshiddenactivationsthatareroughlyzeromean Inthisrespectitsbetterthanthelogistic 101 101 2101 99 0 giveserrorsurface 1 1 21 1 0 giveserrorsurface colorindicatestrainingcase Scalingtheinputs Whenusingsteepestdescent scalingtheinputvaluesmakesabigdifference Itusuallyhelpstotransformeachcomponentoftheinputvectorsothatithasunitvarianceoverthewholetrainingset 1 1 21 1 0 0 1 10 20 1 10 0 giveserrorsurface giveserrorsurface colorindicatesweightaxis Amorethoroughmethod Decorrelatetheinputcomponents Foralinearneuron wegetabigwinbydecorrelatingeachcomponentoftheinputfromtheotherinputcomponents Thereareseveraldifferentwaystodecorrelateinputs AreasonablemethodistousePrincipalComponentsAnalysis Droptheprincipalcomponentswiththesmallesteigenvalues Thisachievessomedimensionalityreduction Dividetheremainingprincipalcomponentsbythesquarerootsoftheireigenvalues Foralinearneuron thisconvertsanaxisalignedellipticalerrorsurfaceintoacircularone Foracircularerrorsurface thegradientpointsstraighttowardstheminimum Commonproblemsthatoccurinmultilayernetworks Ifwestartwithaverybiglearningrate theweightsofeachhiddenunitwillallbecomeverybigandpositiveorverybigandnegative Theerrorderivativesforthehiddenunitswillallbecometinyandtheerrorwillnotdecrease Thisisusuallyaplateau butpeopleoftenmistakeitforalocalminimum Inclassificationnetworksthatuseasquarederrororacross entropyerror thebestguessingstrategyistomakeeachoutputunitalwaysproduceanoutputequaltotheproportionoftimeitshouldbea1 Thenetworkfindsthisstrategyquicklyandmaytakealongtimetoimproveonitbymakinguseoftheinput Thisisanotherplateauthatlookslikealocalminimum Fourwaystospeedupmini batchlearning Use momentum Insteadofusingthegradienttochangethepositionoftheweight particle useittochangethevelocity UseseparateadaptivelearningratesforeachparameterSlowlyadjusttherateusingtheconsistencyofthegradientforthatparameter rmsprop Dividethelearningrateforaweightbyarunningaverageofthemagnitudesofrecentgradientsforthatweight Thisisthemini batchversionofjustusingthesignofthegradient Takeafancymethodfromtheoptimizationliteraturethatmakesuseofcurvatureinformation notthislecture AdaptittoworkforneuralnetsAdaptittoworkformini batches NeuralNetworksforMachineLearningLecture6cThemomentummethod GeoffreyHintonwithNitishSrivastavaKevinSwersky Theintuitionbehindthemomentummethod Imagineaballontheerrorsurface Thelocationoftheballinthehorizontalplanerepresentstheweightvector Theballstartsoffbyfollowingthegradient butonceithasvelocity itnolongerdoessteepestdescent Itsmomentummakesitkeepgoinginthepreviousdirection Itdampsoscillationsindirectionsofhighcurvaturebycombininggradientswithoppositesigns Itbuildsupspeedindirectionswithagentlebutconsistentgradient Theequationsofthemomentummethod Theeffectofthegradientistoincrementthepreviousvelocity Thevelocityalsodecaysbyawhichisslightlylessthen1 Theweightchangeisequaltothecurrentvelocity Theweightchangecanbeexpressedintermsofthepreviousweightchangeandthecurrentgradient Thebehaviorofthemomentummethod Iftheerrorsurfaceisatiltedplane theballreachesaterminalvelocity Ifthemomentumiscloseto1 thisismuchfasterthansimplegradientdescent Atthebeginningoflearningtheremaybeverylargegradients Soitpaystouseasmallmomentum e g 0 5 Oncethelargegradientshavedisappearedandtheweightsarestuckinaravinethemomentumcanbesmoothlyraisedtoitsfinalvalue e g 0 9oreven0 99 Thisallowsustolearnataratethatwouldcausedivergentoscillationswithoutthemomentum Abettertypeofmomentum Nesterov1983 Thestandardmomentummethodfirstcomputesthegradientatthecurrentlocationandthentakesabigjumpinthedirectionoftheupdatedaccumulatedgradient IlyaSutskever 2012unpublished suggestedanewformofmomentumthatoftenworksbetter InspiredbytheNesterovmethodforoptimizingconvexfunctions Firstmakeabigjumpinthedirectionofthepreviousaccumulatedgradient Thenmeasurethegradientwhereyouendupandmakeacorrection Itsbettertocorrectamistakeafteryouhavemadeit ApictureoftheNesterovmethod Firstmakeabigjumpinthedirectionofthepreviousaccumulatedgradient Thenmeasurethegradientwhereyouendupandmakeacorrection brownvector jump redvector correction greenvector accumulatedgradientbluevectors standardmomentum NeuralNetworksforMachineLearningLecture6dAseparate adaptivelearningrateforeachconnection GeoffreyHintonwithNitishSrivastavaKevinSwersky Theintuitionbehindseparateadaptivelearningrates Inamultilayernet theappropriatelearningratescanvarywidelybetweenweights Themagnitudesofthegradientsareoftenverydifferentfordifferentlayers especiallyiftheinitialweightsaresmall Thefan inofaunitdeterminesthesizeofthe overshoot effectscausedbysimultaneouslychangingmanyoftheincomingweightsofaunittocorrectthesameerror Souseagloballearningrate setbyhand multipliedbyanappropriatelocalgainthatisdeterminedempiricallyforeachweight Gradientscangetverysmallintheearlylayersofverydeepnets Thefan inoftenvarieswidelybetweenlayers Onewaytodeterminetheindividuallearningrates Startwithalocalgainof1foreveryweight Increasethelocalgainifthegradientforthatweightdoesnotchangesign Usesmalladditiveincreasesandmultiplicativedecreases formini batch Thisensuresthatbiggainsdecayrapidlywhenoscillationsstart Ifthegradientistotallyrandomthegainwillhoveraround1whenweincreasebyplushalfthetimeanddecreasebytimeshalfthetime Tricksformakingadaptivelearningratesworkbetter Limitthegainstolieinsomereasonablerangee g 0 1 10 or 01 100 Usefullbatchlearningorbigmini batchesThisensuresthatchangesinthesignofthegradientarenotmainlyduetothesamplingerrorofamini batch Adaptivelearningratescanbecombinedwithmomentum Usetheagreementinsignbetweenthecurrentgradientforaweightandthevelocityforthatweight Jacobs 1989 Adaptivelearningratesonlydealwithaxis alignedeffects Momentumdoesnotcareaboutthealignmentoftheaxes NeuralNetworksforMachineLearningLecture6ermsprop Dividethegradientbyarunningaverageofitsrecentmagnitude GeoffreyHintonwithNitishSrivastavaKevinSwersky rprop Usingonlythesignofthegradient Themagnitudeofthegradientcanbeverydifferentfordifferentweightsandcanchangeduringlearning Thismakesithardtochooseasinglegloballearningrate Forfullbatchlearning wecandealwiththisvariationbyonlyusingthesignofthegradient Theweightupdatesareallofthesamemagnitude Thisescapesfromplateauswithtinygradientsquickly rprop Thiscombinestheideaofonlyusingthesignofthegradientwiththeideaofadaptingthestepsizeseparatelyforeachweight Increasethestepsizeforaweightmultiplicatively e g times1 2 ifthesignsofitslasttwogradientsagree Otherwisedecreasethestepsizemultiplicatively e g times0 5 Limitthestepsizestobelessthan50andmorethanamillionth MikeShuster sadvice Whyrpropdoesnotworkwithmini batches Theideabehindstochasticgradientdescentisthatwhenthelearningrateissmall itaveragesthegradientsoversuccessivemini batches Consideraweightthatgetsagradientof 0 1onninemini batchesandagradientof 0 9onthetenthmini batch Wewantthisweighttostayroughlywhereitis rpropwouldincrementtheweightninetimesanddecrementitoncebyaboutthesameamount assuminganyadaptationofthestepsizesissmallonthistime scale Sotheweightwouldgrowalot Isthereawaytocombine Therobustnessofrprop Theefficiencyofmini batches Theeffectiveaveragingofgradientsovermini batches rmsprop Amini batchversionofrprop rpropisequivalenttousingthegradientbutalsodividingbythesizeofthegradient Theproblemwithmini batchrpropisthatwed

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论