最短路径问题评测练习.doc_第1页
最短路径问题评测练习.doc_第2页
最短路径问题评测练习.doc_第3页
最短路径问题评测练习.doc_第4页
最短路径问题评测练习.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

最短路径问题评测练习一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。二、 两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短 三、一点在两相交直线内部例1:已知:如图A是锐角MON内部任意一点,在MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.ABMNE 例2:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) DAOB. .ENCM例3:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?四、点在圆柱中可将其侧面展开求出最短路程将圆柱侧面展成长方形,圆柱体展开的底面周长是长方形的长,圆柱的高是长方形的宽可求出最短路程例:如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A点爬行到C点,那么,最近的路程长为()A7BCD5五、在长方体(正方体)中,求最短路程1)将右侧面展开与下底面在同一平面内,求得其路程2)将前表面展开与上表面在同一平面内,求得其路程3)将上表面展开与左侧面在同一平面内,求得其路程了 然后进行比较大小,即可得到最短路程.例1:有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A5cmBcmC4cmD3cm 例2:如图,AB为O直径,AB=2,OC为半径,OCAB,D为AC三等分点,点P为OC上的动点,求AP+PD的最小值。 练习题1.如图,在正方形ABCD中,点E为AB上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。2.如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,求 。3.如图,在菱形ABCD中,AB=2,BAD=60,E,F,P分别为AB,BC,AC上动点,求PE+PF最小值4.如图,AOB=45,角内有一动点P ,PO=10,在AO,BO上有两动点Q,R,求PQR周长的最小值。 参考答案一、解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线段最短.)二、解:只有A、C、B在一直线上时,才能使AC+BC最小作点A关于直线“街道”的对称点A,然后连接AB,交“街道”于点C,则点C就是所求的点 三、例1:解:分别作点A关于OM,ON的对称点A,A;连接A,A,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例2:解:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。证明:由平移的性质,得 BNEM 且BN=EM, MN=CD, BDCE, BD=CE,所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC.CD.DB.CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在ACE中,AC+CEAE, AC+CE+MNAE+MN,即AC+CD+DB AM+MN+BN所以桥的位置建在CD处,AB两地的路程最短。例3:作法:1.作点C关于直线 OA的对称点点D, 2. 作点C关于直线 OB的对称点点E, 3.连接DE分别交直线OA.OB于点M.N,则CM+MN+CN最短四、分析:要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果解:将圆柱体展开,连接A、C,=4,BC=3,根据两点之间线段最短,AC=5 故选D五、 例1:分析:把此长方体的一面展开,在平面内,两点之间线段最短利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线(1)展开前面、右面,由勾股定理得AB2=(5+4)2+32=90;(2)展开前面、上面,由勾股定理得AB2=(3+4)2+52=74;(3)展开左面、上面,由勾股定理得AB2=(3+5)2+42=80;所以最短路径长为cm 例2:分折:作D关于OC的对称点D,于是有PA+PDAD,(当且仅当P运动到Po处,等号成立),易求AD=。 练习题1.分析:作E关于BD对称点E,E在AB上,有PE+PC=PE+PCEC易求EC=26。2.分析:因AB长为定值,四边形周长最短时有BC+CD+DA最短,作B关于y轴对称点B,A关于x轴对称点A,DA+DC+BC=DA+DC+BCBA(当D,C运动到AB和x轴y轴的交点时等号成立),易求直线AB解折式y= +,C0(0,),D0(-,0),此时=- 3.分折:作E关于AC所直线的对称点E,于是有,PE+PF=PF+PEEF,又因为E在AB上运动,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论