已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中小学数学课程中的数学史意义、内容与结构(提纲)刘 洁 民北京师范大学数学科学学院一、数学史融入中小学数学课程1引言在2001年公布的全日制义务教育数学课程标准(实验稿)和2003年公布的普通高中数学课程标准(实验)中,数学史内容的融入相当引人注目。在课程改革前的中小学数学教学大纲和教材中,数学史主要起两方面作用:通过介绍中国古代数学成就进行爱国主义教育;通过提供少量“花絮”提高学生的学习兴趣。在新一轮中小学数学课程中,数学史首先被看作理解数学的一种途径。2课程标准对数学史教育的具体要求1义务教育数学课程标准对数学史内容的要求义务教育数学课程标准对数学史内容的要求体现在三个方面:(1)在“教材编写建议”中对数学史内容提供较为充分的线索,使教材编写者有较大的选择余地。(2)在“总体目标”中原则性地提出要求。(3)在“分学段目标”中,数学史知识可以作为完成其他具体要求的一种手段和途径。2高中数学课程标准对数学史内容的要求高中数学课程标准对数学史内容的要求体现在两个方面:(1)增设了“数学史选讲”,共18课时,要求课程内容不少于6个专题,提供了11个可供选择的专题。(2)增加了“数学文化”的内容,要求在全部高中数学课程中加以体现,提供了19个可供选择的专题,其中多数与数学史有关。3国际背景:HPM国际背景:HPM(History and Pedagogy of Mathematics)国内:2005年以来已经召开了三次国际研讨会。二、数学史在新课程中的意义0基本观点数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣,培养探索精神,对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。1揭示数学知识的现实来源和应用历史往往揭示出数学知识的现实来源和应用,从而可以使学生感受到数学在文化史和科学进步史上的地位与影响,认识到数学是一种生动的、基本的人类文化活动,进而引导他们重视数学在当代社会发展中的作用,并且关注数学与其他学科之间的关系。例:无理数;三角学;概率论。2理解数学思维一般说来,历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然的、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。这既可以激发学生对数学的兴趣,培养他们的探索精神,历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。历史的发展过程可以告诉我们,在一个专题、一个概念或一个结果的发展中,哪些思想、方法代表着该内容相对于以往内容的实质性进步,从而更深刻地理解它。历史还可以告诉我们在学习过程中可能发生的困难以及克服该困难的可能的途径。例1 不可通约量的发现:突破四则运算;从有限到无穷,从离散到连续;比例理论的发展与深化。例2 解析几何:转换的思想;坐标思想;方程与曲线对应的思想。比较历史上的不同时期、不同民族或地区对同类问题的不同处理方式,或同类方法的不同地位与应用,可以启发学生的解题思路,并从中比较优劣,体会到数学思维的真谛。例3 记数法:巴比伦,埃及,希腊,罗马,玛雅,印度,中国。例4 高次方程:中国的数值解法;欧洲的公式解。历史可以为我们提供那些答案是“不可能”或“不存在”的问题,而对这些问题的探索,是数学研究的一个极为重要的方面,也是数学思维品质的一个重要方面。例:几何三大难题;试证第五公设;一元次方程的根式解。3数学历史名题的教育价值对于那些需要通过重复训练才能达到的目标,数学历史名题可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性,提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出与解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题,或许这个问题还难住了许多有名的人物,学生会感到一种智力的挑战,也会从学习中获得成功的享受,这对于学生建立良好的情感体验无疑是十分重要的;最后,历史名题往往可以提供生动的人文背景。例:兔子问题。意大利数学家斐波那契 (Fibonacci)计算之书(1202)中的一个有趣的问题:有人想知道在一年中一对兔子可以繁殖成多少对,就筑了墙把一对兔子放在里面。如果每对大兔每月生一对小兔,且每对小兔生长一个月就成为大兔,并且所有的兔子全部存活,问一年后围墙中共有多少对兔子。向学生展示历史上的开放性的数学问题将使他们了解到,数学并不是一个静止的、已经完成的领域,而是一个开放性的系统,认识到数学正是在猜想、证明、错误中发展进化的,数学进步是对传统观念的革新,从而激发学生的非常规思维,使他们感受到,抓住恰当的、有价值的数学问题将是激动人心的事情。例:尼科马修斯猜想,费尔马大定理,哥德巴赫猜想,四色定理。数学中有许多著名的反例,通常的教科书中很少会涉及它们。结合历史介绍一些数学中的反例,可以从反面给学生以强烈的震撼,加深他们对相应问题的理解。4榜样的激励作用 帕斯卡16岁成为射影几何的奠基人之一,19岁发明原始计算器。牛顿22岁发现一般的二项式定理,23岁创立微积分学。高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的算术研究。波尔约23岁提出非欧几何学的基本思想。黎曼被认为是有史以来最大的几位几何学家之一,他在25-28岁期间在数学的三四个领域连续做出了重要的开创性工作。阿贝尔22岁证明一般五次以上代数方程不存在求根公式。伽罗瓦创建群论的时候只有18岁,死时还不满21岁。克莱因23岁发表“爱尔朗根纲要”,全面推动了几何学的研究。哥德尔25岁发表震惊整个数学界的“不完全性定理”。图灵24岁发表论理想数的论文,提出了通用计算机的基本原理,从而成为理论计算机之父。法国的布尔巴基学派对20世纪数学的发展产生了极大影响,它的几位主要创建者当时年纪最大的也只有32岁。 19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠作私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。外尔斯特拉斯读大学耽于玩乐,未能毕业,离开大学后才开始发愤努力,40岁获得数学界承认,50岁左右成为杰出的数学家,晚年被欧洲数学界公认为“我们大家的老师”、“数学的良心”。 古希腊数学家阿那克萨戈拉晚年因自己的科学观点触怒权贵而被诬陷入狱面临死刑的威胁,但他在牢房中还在研究化圆为方问题。阿基米德在敌人破城而入、生命处于危急关头的时候仍然沉浸在数学研究之中,他的墓碑上没有文字,只有一个漂亮的几何构图,那是他发现并证明的一条几何定理。为了让天文学家从繁琐的计算中解脱出来,纳皮尔发明了对数,而为了计算对数表他自己却整整花费了20年的时间。17世纪初,鲁道夫穷毕生精力将圆周率的值计算到35位小数,并将其作为自己的墓志铭。大数学家欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚韧的毅力保持了数学方面的高度创造力,以致由于他的论文多而且长,科学院不得不对论文篇幅做出限制,在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。 数学家的墓碑与墓志铭。阿基米德:圆柱容球。雅格布伯努利:对数螺线。 这样的一个名单可以开得更长,这些杰出数学家的故事对于今天的许多学生来说,无疑有着巨大的激励作用。许多大数学家在成长过程中遭遇过挫折,不少著名数学家都犯过今天看来相当可笑的错误,介绍一些大数学家是如何遭遇挫折和犯错误的,不仅可以使学生在数学方法上从反面获得全新的体会(这往往能够获得比从正面讲解更好的效果),而且知道大数学家也同样会犯错误、遭遇挫折,对学生正确看待学习过程中遇到的困难、树立学习数学的自信心会产生重要的作用。数学思想形成中的曲折与艰辛以及那些伟大的探索者的失败与成功还可以使学生体会到,数学既不仅仅是训练思维的体操,也不仅仅是科学研究的工具,它有着丰富得多的人文内涵。5不宜狭隘地将数学史知识视为宣传爱国主义的工具数学是世界性的科学,我们需要接受世界各民族的优秀文化遗产,而不应过分强调民族主义;以爱国主义为目的的科学史教育常导致只讲成就,不讲弱点,对其他民族的成就又视而不见,一方面是忽略了数学发展中许多有价值的、可以给学生以启发的东西,另一方面是培养了一种狭隘民族主义意识,同时也使学生的思想变得很脆弱,一旦他们知道了反面的东西,将有一种受骗的感觉。例:八卦不是二进制。中国对于勾股定理并无优先权。中国古代的九章算术中虽然注意到了开方不尽数问题,但中国古代数学家却从来也没有认识过无理数。二、揭示数学知识的来源和背景1问题的提出、解决与发展例如:化圆为方问题。化圆为方问题:作一正方形,使其与一给定的圆面积相等。本质上是要求圆面积,由于其研究角度,引出一系列新的问题和方法。物不知数问题。中国古代数学书孙子算经中著名的“物不知数”问题,看似一个简单的数学游戏,实际上是对中国古代天文学中推求上元积年算法的一个概括,或者说是推算上元积年的一个数学模型。原题为:“今有物,不知其数。三三数之,剩二;五五数之,剩三;七七数之,剩二。问物几何。 答曰:二十三。 术曰:三三数之剩二,置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十。并之,得二百三十三。以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五。一百六以上,以一百五减之,即得。”切线问题。在近代数学史上,求曲线在一点的切线是十分引人注目的问题,为什么?法线切线;瞬时速度;进而引出导数概念。赌博中断问题。赌博中断问题:两个赌徒相约赌若干局,双方各拿出相同数量的赌金,谁先胜 s局谁就赢得全部赌金。但是,当一个赌徒胜 a局(a s),另一个胜 b局(b s)时,赌博因故中断,问应该如何分配赌金。帕乔利(L.Pacioli,约14451517,意大利)。梅雷帕斯卡费尔马。2方法、重要结果及原理的建立、应用与发展例如:反证法。逻辑基础是排中律。较早的应用:毕达哥拉斯学派证明:单位正方形的边长与其对角线不可公度。欧几里得证明:素数的个数是无穷的。毕达哥拉斯定理。毕达哥拉斯定理(在中国被称为勾股定理)是初等数学中一个非常优美而深刻的定理,又有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣。围绕这个著名定理既有许多动人的故事,它的多种证明方法又是学习数学思想与方法的生动材料。黄金分割。黄金分割同样十分优美和充满魅力。早在公元前6世纪它就为毕达哥拉斯学派所研究,欧几里得在几何原本中给出了一个十分精彩的证明。近代以来人们又惊讶地发现,它与著名的斐波那契数列有着密不可分的内在联系。圆面积。割补近似:古埃及(约1650 B.C.)割圆术的萌芽: Antiphon,Bryson(公元前5世纪)。割圆术起源于公元前5世纪希腊数学家对化圆为方问题的研究。它非常直观而又十分深刻。由于直观,任何人都可以自然地接受它和理解它,而其中蕴含的思想与定积分是相通的,对于理解一般的面积体积度量问题也有明显的帮助。穷竭法:Eudoxus(公元前4世纪),Archimedes 割圆术(公元前3世纪)。刘祖原理。刘祖原理通称祖暅公理,西方称之为卡瓦列利原理。它是初等几何中处理面积体积问题的一个关键性定理,其基本思想在九章算术终就有所体现,刘徽(公元263年)在许多场合用它解决问题,祖暅(6世纪)明确概括了它,这比意大利数学家卡瓦列利(17世纪)的相应工作早了至少1000年。从直观意义上这个原理并不难理解,但其中的思想也是与定积分相通的。这些结果对于开阔学生的眼界、启发思维和为进一步的学习奠定基础都是重要的,而把它们作为历史上的著名工作来介绍,又会增添许多文化韵味并极大地激发学生的兴趣,从而有助于学生对数学建立良好的情感体验。3概念的提出与发展 通过对历史的介绍可以使学生更好地体会到,数起源于“数”(sh),量起源于“量”(ling),因此数和兴都来源于现实世界。 希腊人为什么要引入素数,没有素数会怎么样?从古至今寻找大素数的竞赛以及人们为什么要这样做。 最初无理数是怎样被发现的,它为什么会被称为“无理数”。毕达哥拉斯学派。最初圆锥曲线是怎样引入的?为什么?极限概念与方法。九章算术方程中的“方程”是什么?4理论体系、数学分支的建立例如:通常所说的算术,在中国至少可以追溯到甲骨文的时代,在巴比伦至少可以追溯到公元前1900年,在古埃及至少可以追溯到公元前1850年。初等数论起源于毕达哥拉斯学派对自然数性质的有关研究(公元前6世纪)。希腊历史学家希罗多德认为,埃及几何学起源于尼罗河每年泛滥之后土地的重新丈量。这或许是真的,但他所叙述的事情发生在大约1300B.C.,这比两部主要的埃及数学纸草书的年代晚了许多,因此在时间上肯定是有问题的。欧几里得几何(约公元前300年),非欧几何(19世纪)。代数学作为解方程的学问(9世纪);近代意义上的代数学(16世纪,韦达)。三角学作为初等数学中的独立分支(13世纪阿拉伯,15世纪欧洲)。三、阐发数学思想方法1主要数学方法溯源2中学数学中典型方法的历史背景3经典案例分析例:数形结合(有多个层次)。归纳(主要是不完全归纳,作用,风险,罗素的归纳主义火鸡)。类比。直观。转化(倍立方体问题转化为求两个比例中项的问题,对数,解析几何)。反证法(“存在无穷多个素数”的证明,2是无理数的证明。)。数学归纳法。四、引导数学欣赏1尝试欣赏数学2数学历史名题欣赏3数学方法与思想欣赏4数学推理、模型与构图欣赏5数学精彩结果欣赏6数学概念与性质欣赏7数学理论体系欣赏8欣赏数学,领悟数学五、介绍名家名作1中国古代名家名作算数书,九章算术,算经十书。赵爽,刘徽,祖冲之父子,僧一行,贾宪、杨辉、帕斯卡与贾宪三角,秦九韶数书九章,李冶测圆海镜,朱世杰算学启蒙、四元玉鉴,徐光启。2外国古代名家名作古埃及:莫斯科纸草书,阿默斯纸草书。古希腊:泰勒斯与数学中证明思想的起源。毕达哥拉斯,欧几里得与他的几何原本。阿基米德圆的度量。埃拉托色尼与筛法。丢番图算术。阿拉伯:花拉子米还原与对消的科学(初等代数),纳西尔埃德丁论完全四边形(三角学)。斐波那契算书。韦达代数学引论。纳皮尔。3近现代名家名作笛卡尔几何学。费尔马。帕斯卡论算术三角形。牛顿。莱布尼茨。棣莫弗。欧拉。高斯。罗巴切夫斯基。阿贝尔。伽罗瓦。黎曼。康托尔。希尔伯特数学问题。思考题数学史在中学数学教学中的应用(单元设计)论通过数学史引导学生理解数学论中小学数学教师的数学史修养主要参考书中华人民共和国教育部制订,全日制义务教育数学课程标准(实验稿),北京师范大学出版社,2001数学课程标准研制组编写,全日制义务教育数学课程标准(实验稿)解读,北京师范大学出版社,2002,2003中华人民共和国教育部制订,普通高中数学课程标准(实验),人民教育出版社,2003数学课程标准研制组编写,普通高中数学课程标准(实验)解读,江苏教育出版社,2004(美)莫里斯克莱因,古今数学思想(全四册),张理京、张锦炎、江泽涵等译,上海科学技术出版社,2002(美)V.J.卡茨,数学史通论(第二版),李文林等译,高等教育出版社,2004(美)H.伊夫斯,数学史概论,欧阳绛译,山西人民出版社,1986;山西经济出版社,1993;哈尔滨工业大学出版社,2009李文林,数学史概论(第二版),高等教育出版社,2002(美)迈克尔J布拉德利,数学的诞生,陈松译,上海科学技术文献出版社,2008(美)迈克尔J布拉德利,天才的时代,展翼文译,上海科学技术文献出版社,2008(美)迈克尔J布拉德利,数学的奠基,杨延涛译,上海科学技术文献出版社,2008(美)迈克尔J布拉德利,现代数学,王潇译,上海科学技术文献出版社,2008(美)迈克尔J布拉德利,数学前沿,蒲实译,上海科学技术文献出版社,2008(美)理查德曼凯维奇,数学的故事,冯速译,海南出版社,2002(美)H.Eves,数学史上的里程碑,欧阳绛等译,上海科学技术出版社,1990(美)W.Dunham,天才引导的历程,苗锋译,中国对外翻译出版公司,1994(美)M.克莱因,西方文化中的数学(1953),张祖贵译,复旦大学出版社,2004(美)M.克莱因,数学与知识的探求(1986),刘志勇译,西方数学文化理念传播译丛,复旦大学出版社,2005(美)约翰塔巴克,数计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年联通云赛道试题库及答案
- 2025年度共享出行个人司机雇佣管理协议4篇
- 委托居间合同范本模板
- 2025年度环保建筑材料ROHS检测与质量监控协议3篇
- 二零二五年度车辆租赁合同(含司机培训及考核)4篇
- 绿色照明引领未来学校教室健康照明战略
- 2025年度住宅小区地下车库车位产权转让及维修保养合同3篇
- 2025年度人工智能应用开发个人外包合同模板4篇
- 二零二五年度宠物送养与领养公益合作协议3篇
- 二零二五年度宠物领养中心项目合作协议3篇
- 整式的加减单元测试题6套
- 股权架构完整
- 山东省泰安市2022年初中学业水平考试生物试题
- 注塑部质量控制标准全套
- 人教A版高中数学选择性必修第一册第二章直线和圆的方程-经典例题及配套练习题含答案解析
- 毕业设计(论文)-液体药品灌装机的设计与制造
- 银行网点服务礼仪标准培训课件
- 二年级下册数学教案 -《数一数(二)》 北师大版
- 晶体三极管资料
- 银行内部举报管理规定
- 石群邱关源电路(第1至7单元)白底课件
评论
0/150
提交评论