化学键分子或晶体中相邻原子(离子).ppt_第1页
化学键分子或晶体中相邻原子(离子).ppt_第2页
化学键分子或晶体中相邻原子(离子).ppt_第3页
化学键分子或晶体中相邻原子(离子).ppt_第4页
化学键分子或晶体中相邻原子(离子).ppt_第5页
已阅读5页,还剩90页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

化学键 分子或晶体中相邻原子 离子 间的强烈相互作用 第八章化学键与分子结构 问 氢键属于化学键吗 化学键有哪些类型 离子键共价键金属键 8 1离子键理论 1916年德国科学家Kossel提出离子键理论 1 1离子键的形成 以NaCl为例 第一步原子得失电子形成离子 Na e Na Cl e Cl 相应的电子构型变化 2s22p63s1 2s22p6 3s23p5 3s23p6形成Ne和Ar的稀有气体原子的结构 形成稳定离子 第二步靠静电吸引 形成化学键 体系的势能与核间距之间的关系如图所示 纵坐标的零点当r无穷大时 即两核之间无限远时的势能 下面来考察Na 和Cl 彼此接近的过程中 势能V的变化 图中可见 当r减小时 正负离子靠静电相互吸引 势能V减小 体系趋于稳定 r为核间距V为体系的势能 离子键的形成条件 1 元素的电负性差比较大 X 1 7 发生电子转移 产生正 负离子 形成离子键 X1 7 实际上是指离子键的成分大于50 2 易形成稳定离子 Na 2s22p6 Cl 3s23p6 只得失少数的电子就达到稀有气体式稳定结构 3 形成离子键时释放能量多 Na s 1 2Cl2 g NaCl s H 410 9kJ mol 1在形成离子键时 以放热的形式 释放较多的能量 离子键 由原子间发生电子的得失 形成正负离子 并通过静电作用而形成的化学键 离子型化合物 由离子键形成的化合物碱金属和碱土金属 Be除外 的卤化物是典型的离子型化合物 2 离子键没有方向性 在任何方向同等程度地吸引相反电荷的离子 所以无方向性 3 离子键没有饱和性 只要是正负离子之间 则彼此吸引 即无饱和性 4 键的离子性与元素的电负性有关 X 1 7 发生电子得失 形成离子键 X 1 7 不发生电子得失 形成共价键 但离子键和共价键之间 并非可以截然区分的 可将离子键视为极性共价键的一个极端 而另一极端则为非极性共价键 1 3离子的特征 从离子键的实质是静电引力F q1q2 r2出发 影响离子键强度的因素有 离子的电荷q 离子的电子层构型和离子半径r 即离子的三个重要特征 1 离子的电荷 2 离子的电子层构型 电荷高 离子键强 离子的电子层构型大致有5种 1 2电子构型 2 8电子构型 3 18电子构型 4 18 2 电子构型 5 9 17电子构型在离子的半径和电荷大致相同条件下 不同构型的正离子对同种负离子的结合力的大小规律 8电子层构型的离子 9 17电子层构型的离子 18或18 2电子层构型的离子 P167 3 离子半径 d值可由晶体的X射线衍射实验测定得到 例如MgOd 210pm 1926年 哥德希密特 Goldschmidt 用光学方法测得了F 和O2 的半径 分别为133pm和132pm 结合X射线衍射所得的d值 得到一系列离子半径 dMgO 210 132 78 pm 这种半径为哥德希密特半径 1927年 Pauling把最外层电子到核的距离 定义为离子半径 并利用有效核电荷等数据 求出一套离子半径数值 被称为Pauling半径 教材上在比较半径大小和讨论变化规律时 多采用Pauling半径 离子半径的变化规律 a 同主族从上到下 电子层增加 具有相同电荷数的离子半径增加 Li Na K Rb Cs F Cl Br I b 同周期的主族元素 从左至右离子电荷数升高 最高价离子半径减小 Na Mg2 Al3 K Ca2 过渡元素 离子半径变化规律不明显 c 同一元素 不同价态的离子 电荷高的半径小 如Ti4 Ti3 Fe3 Fe2 d 负离子半径一般较大 正离子半径一般较小 e 周期表中对角线上 左上的元素和右下的元素的离子半径相近 1 4离子晶体 1 离子晶体的特点 导电性 熔点 沸点较高正负离子间的静电作用力较强 硬度高延展性差因离子键强度大 所以硬度高 但受到外力冲击时 易发生位错 导致破碎 水溶液或熔融态导电 是通过离子的定向迁移完成的 而不是通过电子流动导电 无确定的分子量 NaCl晶体是个大分子 晶体中无单独的NaCl分子存在 NaCl是化学式 因而58 5可以认为是式量 不是分子量 因离子键强度大 所以硬度高 但受到外力冲击时 易发生位错 导致破碎 硬度高延展性差 受力时发生错位 使正正离子相切 负负离子相切 彼此排斥 离子键失去作用 故离子晶体无延展性 如CaCO3可用于雕刻 而不可用于锻造 即不具有延展性 2 离子晶体的类型 a CsCl型晶体属简单立方晶格 b NaCl型晶体属立方面心晶格 c 立方ZnS型属立方面心晶格 AB型离子化合物的三种晶体结构类型 a b c 3 离子半径比与配位数和晶体构型的关系 r r 0 414 r r 0 414 r r 0 414 离子键的强弱用什么物理量来衡量 1 5晶格能 晶格能是气态的正负离子 结合成1mol离子晶体时 放出的能量 用U表示 Na g Cl g NaCl s H U晶格能U越大 则形成离子键得到离子晶体时放出的能量越多 离子键越强 离子化合物越稳定 玻恩 哈伯循环 Born HaberCirculation Born和Haber设计了一个热力学循环过程 从已知的热力学数据出发 计算晶格能 晶格能的计算 看课本P166就是一个盖斯定律的具体图式 8 2共价键理论 路易斯理论 1916年 美国科学家Lewis提出共价键理论 认为分子中的原子都有形成稀有气体电子结构的趋势 求得本身的稳定 而达到这种结构 可以不通过电子得失形成离子和离子键来完成 而是通过共用电子对来实现 Lewis的贡献 在于提出了一种不同于离子键的新的键型 解释了 X比较小的元素之间原子的成键事实 但Lewis没有说明这种键的实质 所以适应性不强 在解释BCl3 PCl5等其中的原子未全部达到稀有气体结构的分子时 遇到困难 2 1价键理论 VB法 1927年 Heitler和London用量子力学处理氢气分子H2 解决了两个氢原子之间的化学键的本质问题 使共价键理论从经典的Lewis理论发展到今天的现代共价键理论 价键理论的基本论点包括 1 共价键的本质 是什么 2 成键三原理 3 共价键的特点 现代共价键理论有两个 VB法和MO法 VB法的要点 共价键成键三原理 a 电子配对原理 b 能量最低原理 最小排斥原理 c 原子轨道最大 对大 重叠原理 总之 单电子要配对 共价键尽可能远离 沿重叠程度最大的方向重叠 共价键的特点 有饱和性 n单电子 n共价键 有方向性 最大重叠 有空间构型 最小排斥 共价键的方向性和饱和性 共价键的数目由原子中单电子数决定 包括原有的和激发而生成的 例如氧有两个单电子 H有一个单电子 所以结合成水分子时 只能形成2个共价键 C最多能与4个H形成共价键 原子中单电子数决定了共价键的数目 即为共价键的饱和性 各原子轨道在空间分布方向是固定的 为了满足轨道的最大程度重叠 原子间成的共价键 当然要具有方向性 以HCl为例 两条轨道各有一个单电子 两两配对形成一个共价键就达饱和了 饱和性 Cl的3pz和H的1s轨道重叠 只有沿着z轴重叠 才能保证最大程度的重叠 而且不改变原有的对称性 Cl2分子中成键的原子轨道 也要保持对称性和最大程度的重叠 方向性 所以共价键有不同类型 共价键的键型 成键的两个原子核间的连线称为键轴 按成键轨道与键轴之间的关系 共价键的键型主要分为两种 键将成键轨道沿着键轴旋转任意角度 图形及符号均保持不变 即 键的键轴是成键轨道的任意多重轴 一种形象化描述 键是成键轨道的 头碰头 重叠 如HCl分子中的3p和1s的成键 和Cl2中的3p和3p的成键 键成键轨道绕键轴旋转180 时 图形复原 但符号变为相反 例如两个px沿z轴方向重叠的情况 YOZ平面是成键轨道的通过键轴的节面 则 键的对称性可以描述为 对通过键轴的节面呈反对称 即图形相同 但符号相反 形象化的描述 键是成键轨道的 肩并肩 重叠 S SS PxPx Px形成 键Py PyPz Pz形成 键 一般 键比 键稳定 单键只有 重键 三键有 双键有 这样引出杂化轨道理论和价电子对互斥理论 说明共价分子的构型 2 2杂化轨道理论 CH4形成的过程中 C原子的电子曾有过如下的激发步骤 以得到4个单电子 显然 这4个单电子所在原子轨道不一致 利用这些原子轨道与4个H原子形成的化学键 应该不完全相同 也不应该指向正四面体的四个顶点 CH4为什么是正四面体结构 AlCl3键角120 NH4 键角109 28 在成键过程中 轨道之间的夹角是怎样形成的 这些问题用一般价键理论难以解释 Pauling1931年提出杂化轨道理论 非常成功地解释了构型方面的这类问题 价层电子对互斥理论 可以用来判断分子和离子的几何构型 但是这一理论说明不了分子和离子的几何构型的形成原因 杂化轨道理论发展了价键理论 可以对已知的构型进行解释 1 杂化与杂化轨道的概念 在形成多原子分子的过程中 中心原子的若干能量相近的原子轨道重新组合 形成一组新的原子轨道 这个过程叫做轨道的杂化 产生的新轨道叫做杂化轨道 形成CH4分子时 中心碳原子的2s和2px 2py 2pz等四条原子轨道发生杂化 形成一组 四条 新的杂化轨道 即4条sp3杂化轨道 这些sp3杂化轨道不同于s轨道 也不同于p轨道 杂化轨道有自己的波函数 能量 形状和空间取向 2 杂化轨道的类型 a sp杂化 在sp杂化轨道中 s和p的成份各1 2 两条杂化轨道呈直线形分布互成180 角 BeCl2分子直线形 用杂化轨道理论分析其成键情况 说明直线形构型的原因 Besp杂化2s22p0 2条sp杂化轨道呈直线形分布 分别与2个Cl的3p轨道成键 故分子为直线形 b sp2杂化 BCl3平面三角形构型Bsp2杂化 3个sp2杂化轨道呈三角形分布 分别与3个Cl的3p成 键 故BCl3分子构型为三角形 激发 杂化 成键同时进行n杂化轨道数目 n参与杂化的原子轨道总数 c sp3杂化 CH4是正四面体结构 Csp3杂化 4个轨道呈正四面体分布 分别与4个H的1s成 键 没有未杂化的电子 故CH4无双键 d sp3d2 等性杂化与不等性杂化 等性杂化 如C的sp3杂化 4条sp3杂化轨道能量一致 不等性杂化 H2OV形结构 Osp3不等性杂化 判断是否等性杂化 要看各条杂化轨道的能量是否相等 不看未参加杂化的轨道的能量 为什么要杂化 杂化后 角度分布更为集中 方向性更强 增大了成键原子轨道的重叠程度 成键能力增强 形成的键更牢固 体系能量降低 分子趋于稳定 杂化类型与分子构型对应 SP 直线形1800SP2 平面三角形1200SP3 正四面体109 50练习不等性杂化 2 3价层电子对互斥理论 VSEPR法 1940年Sidgwick提出价层电子对互斥理论 用以判断分子的几何构型 特点 概念简单 能较好地判断共价分子的空间构型 1 理论要点 a ABn型分子的几何构型取决于中心A的价层中电子对的排斥作用 分子的构型总是采取电子对排斥力最小的形式 b ABn型分子的几何构型取决于中心A的价层电子对的数目和类型 c 电子对间的夹角和成键情况决定相互排斥作用的大小 即 一个共价分子的构型 取决于中心原子周围价层电子对排布的几何构型 2 判断共价分子结构的一般规则 a 确定中心价层电子的总数和对数 b 根据中心原子A周围的电子对数 找出相应的理想几何结构图形 c 画出结构图 d 确定排斥力最小的稳定结构 什么是价层电子对数n 键电子对数 孤电子对数 如 CH4n 4n孤 0n价 4 0 4最可能排成正四面体 排布要点 价层电子对彼此排斥 分子键角要尽可能的大 孤对电子对成键电子有较大排斥作用 使键角变小 n孤 中心原子的价电子数 配位原子中的未成对电子总数 例如 ICl4n孤 7 4 1 2 1 5 2CO2 离子时 负离子加在价电子数上 正离子减去 如 NH4 n孤 5 1 4 1 2 0 3 判断共价分子结构的实例 34443 三角形正四面体正四面体正四面体三角形三角双锥 分子构型三角形V字构型三角锥正四面体V字形T字形 总之 中心原子的价层电子对与分子构型 直线形 平面三角形 正四面体 三角双锥 正八面体 有孤对电子存在时 分子构型改变 练习 推测SO2和ClO3的分子构型 1 理论要点 分子轨道成键三原理 分子轨道理论 MO法 一 分子轨道由原子轨道线性组合而成1 分子轨道由原子轨道线性组合而成 2 分子轨道的数目与参与组合的原子轨道数目相等n分子轨道 n原子轨道H2中的两个H 有两个 1s 可组合成两个分子轨道 MO c1 1 c2 2 MO c1 1 c2 23 分子轨道中电子的排布也遵从原子轨道电子排布的原则每一个分子轨道都有一相应的能量和图象原子轨道线性组合的类型s s重叠 s p重叠 p p重叠 p d重叠 d d重叠 二 线性组合的原则 a 对称性一致原则对核间连线呈相同的对称性的轨道可以进行线性组合 除上述的s s p p之外 还有s px沿x方向的组合 两者的对称性一致 组成 分子轨道 b 能量相近原则H1s 1312kJ mol 1Na3s 496kJ mol 1O2p 1314kJ mol 1Cl3p 1251kJ mol 1 以上数据根据I1值估算 左面3个轨道能量相近 彼此间均可组合 形成分子轨道 但Na3s比左面3个轨道的能量高许多 不能与之组合 实际上Na与H Cl O一般不形成共价键 只以离子键相结合 c 最大重叠原理在对称性一致 能量相近的基础上 原子轨道重叠越大 越易形成分子轨道 或共价键越强 三 同核双原子分子的分子轨道能级图 课本P185 同核双原子分子的分子轨道能级图分为A图和B图两种 A图适用于O2 F2分子 B图适用于B2 C2 N2等分子 能级交错 必须注意A图和B图之间的差别 1s 1s A图 H2分子轨道图 分子轨道式 1s 2 电子填充在成键轨道中 能量比在原子轨道中低 这个能量差就是分子轨道理论中化学键的本质 可用键级表示分子中键的个数及比较分子的稳定性键级 成键电子数 反键电子数 2H2分子中 键级 2 0 2 1 单键 键级是否可以为小数 N2分子轨道图 能级交错 三键一个 键 两个 键 用分子轨道理论说明为什么N2稳定 练习写出O2的分子轨道式 计算键级 说明它的顺磁性 比较N2与N2 的稳定性 用MO法说明为什么He2不存在 N2分子为什么稳定 1 N2分子键级为3 键级大 分子稳定 2 由于能级交错 轨道能级降低 键稳定 3 由于两个 电子云包围了 电子云 键也稳定 所以N2分子中的键都非常牢固 分子稳定 5 异核双原子分子的分子轨道能级图 了解 CO异核双原子分子CO和N2是等电子体 其分子轨道能级图与N2相似 值得注意的是C和O的相应的原子轨道能量并不相等 同类轨道 Z大的能量低 三键一个 键 两个 键 无单电子 显抗磁性 归纳键参数与分子的性质 了解 1 键级 键级 成键电子数 反键电子数 2 2 键能 AB g A g B g H EAB对于双原子分子 键能EAB等于解离能DAB 但对于多原子分子 则要注意键能与解离能的区别与联系 如NH3 NH3 g H g NH2 g D1 435 1kJ mol 1NH2 g H g NH g D2 397 5kJ mol 1NH g H g N g D3 338 9kJ mol 1 三个D值不同 D1 D2 D3 为什么 EN H 390 5 kJ mol 1 3 键长 分子中成键两原子核之间的距离叫键长 一般键长越小 键越强 键长 pm键能 kJ mol 1C C154345 6C C133602 0C C120835 1 在不同化合物中 相同的键 键长和键能并不相等 例如 CH3OH中和C2H6中均有C H键 而它们的键长和键能不同 4 键角 键角是分子中键与键之间的夹角 在多原子分子中才涉及键角 如H2S H S H键角为92 决定了H2S分子的构型为 V 字形 又如CO2 O C O的键角为180 则CO2分子为直线形 键角是决定分子几何构型的重要因素 5 键的极性 注意与分子极性的关系 金属键理论 了解 3 1金属键的改性共价键理论金属键的形象说法是 失去电子的金属离子浸在自由电子的海洋中 金属离子通过吸引自由电子联系在一起 形成金属晶体 这就是金属键 金属键无方向性 无固定的键能 金属键的强弱和自由电子的多少有关 也和离子半径 电子层结构等其它许多因素有关 很复杂 金属键的强弱可以用金属原子化热等来衡量 金属原子化热是指1mol金属变成气态原子所需要的热量 金属原子化热数值小时 其熔点低 质地软 反之则熔点高 硬度大 例如NaAl原子化热108 4kJ mol 1326 4kJ mol 1m p 97 5 660 b p 880 1800 金属可以吸收波长范围极广的光 并重新反射出 故金属晶体不透明 且有金属光泽 金属受外力发生变形时 金属键不被破坏 故金属有很好的延展性 与离子晶体的情况相反 在外电压的作用下 自由电子可以定向移动 故有导电性 受热时通过自由电子的碰撞及其与金属离子之间的碰撞 传递能量 故金属是热的良导体 3 2金属键的能带理论 理论要点 1 电子是离域的所有电子属于金属晶体 或说为整个金属大分子所共有 不再属于哪个原子 我们称电子是离域的 2 组成金属能带 EnergyBand Na晶体中 n个3s轨道组成n条分子轨道 这n条分子轨道之间能量差小 电子跃迁所需能量小 这些能量相近的能级组成能带 能带的能量范围很宽 有时可达数百kJ mol 1 3 满带导带和空带 以Li为例 1s22s12p0 1s轨道充满电子 故组成的能带充满电子 称为满带 2s轨道电子半充满 组成的能带电子也半满 称为导带 2p能带中无电子 称为空带 从满带顶到导带底 或空带底 的能量间隔很大 电子跃迁困难 这个能量间隔称为禁带 4 能带重叠 相邻近的能带 有时可以重叠 即能量范围有交叉 如Be的2s能带和2p能带 可以部分重叠 Be的2s能带是满带 通过重叠电子可以跃迁到2p空带中去 金属晶体 金属晶体中离子是以紧密堆积的形式存在的 六方紧堆晶格 面心立方紧堆晶格 双原子分子HCl的正负电重心不重合 是极性分子 若正电 和负电 重心上的电荷的电量为q 正负电重心之间的距离为d 称偶极矩长 则偶极矩 qd 分子间作用力分子内原子间的结合靠化学键 物质中分子间存在着分子间作用力 1 分子的极性分子的正电重心和负电重心不重合 则为极性分子 其极性的大小可以用偶极矩 来度量 偶极矩以德拜 D 为单位 当q 1 62 10 19库仑 电子的电量 d 1 0 10 10m 时 4 8D 极性分子与非极性分子 双原子分子的偶极矩就是极性键的键矩 键的极性大小 可以通过下列的数据体会偶极矩单位D的大小 HIHBrHClNH3H2O乙醚 D0 380 791 031 661 851 15 1 极性分子的偶极矩称为永久偶极 非极性分子在外电场的作用下 可以变成具有一定偶极矩的极性分子 诱导偶极用 表示 其强度大小和电场强度成正比 也和分子的变形性成正比 所谓分子的变形性 即分子的正负电重心的可分程度 分子体积越大 电子越多 变形性越大 2诱导偶极和瞬间偶极 而极性分子在外电场作用下 其偶极也可以增大 在电场的影响下产生的偶极称为诱导偶极 非极性分子在无外电场作用时 由于运动 碰撞 原子核和电子的相对位置变化 其正负电重心可有瞬间的不重合 极性分子也会由于上述原因改变正负电重心 这种由于分子在一瞬间正负电重心不重合而造成的偶极叫瞬间偶极 瞬间偶极和分子的变形性大小有关 4 2分子间作用力 范德华力 化学键的结合能一般在1 0 102kJ mol 1数量级 而分子间力的能量只有几个kJ mol 1 1取向力极性分子之间永久偶极的定向作用称为取向力 它仅存在于极性分子之间 F 2 2诱导力诱导偶极 永久偶极之间的作用称为诱导力 极性分子作为电场 使非极性分子产生诱导偶极或使极性分子的偶极增大 也产生诱导偶极 这时诱导偶极与永久偶极之间产生诱导力 因此诱导力存在于极性分子与非极性分子之间 也存在于极性分子与极性分子之间 3色散力 瞬间偶极 瞬间偶极之间有色散力 由于各种分子均有瞬间偶极 故色散力存在于极性分和极性分子 极性分子和非极性分子及非极性分子和非极性分子之间 所有分子间均有色散力 色散力不仅存在广泛 而且在分子间力中 色散力经常是重要的 下面的数据可以说明这一点 kJ mol 1取向力诱导力色散力Ar008 49 HCl3 3051 10416 82 取向力 诱导力和色散力统称范德华力 特性为a 永远存在于分子之间 b 力的作用很小 c 无方向性和饱和性 d 是近程力 F 1 r7 e 经常是以色散力为主 He Ne Ar Kr Xe从左到右原子半径 分子半径 依次增大 变形性增大 色散力增强 分子间结合力增大 故b p 依次增高 可见 范德华力的大小与物质的m p b p 等物理性质有关 总结 分子间作用力的存在 1 极性与极性分子间 存在着三种力2 极性与非极性分子间 存在二种力3 非极性与非极性分子间 存在一种力问 H2O与Cl2分子间有什么样的作用力 水分子间还存在什么样的作用力 4 4氢键 掌握 1 氢键的形成以HF为例 F的电负性相当大 r相当小 电子对偏向F 而H几乎成了质子 这种H与其它分子中电负性相当大 r小的原子相互接近时 产生一种特殊的分子间力 氢键 表示为 如F H F H 氢键的形成有两个两个条件 1与电负性大且r小的原子 F O N 相连的H 2在附近有电负性大 r小的原子 F O N 又如水分子之间的氢键 由于H的两侧电负性极大的原子的负电排斥 使两个原子在H两侧呈直线排列 除非其它外力有较大影响时 才改变方向 b 氢键的强度氢键的强度介于化学键和分子间作用力之间 其大小和H两侧的原子的电负性有关 见下列氢键的键能数据 F H FO H ON H NE kJ mol 128 018 85 4 c 分子内氢键上面谈的氢键均在分子间形成 若H两侧的电负性大的原子属于同一分子 则为分子内氢键 2 氢键的特点 a 饱和性和方向性由于H的体积小 1个H只能形成一个氢键 邻硝基苯酚 3 氢键对于化合物性质的影响分子间存在氢键时 大大地影响了分子间的结合力 故物质的熔点 沸点将升高 HFHClHBrHI半径依次增大 色散力增加 b p 依次增高 HCl HBr HI但由于HF分子间有氢键 故HF的b p 在这个序列中最高 破坏了从左到右b p 升高的规律 H2O NH3由于分子间氢键的存在 在同族氢化物中b p 亦是最高 如HNO3 存在分子间氢键 而分子量相同的无分子间氢键 故前者的b p 高 典型的例子是对硝基苯酚和邻硝基苯酚 可以形成分子内氢键时 势必削弱分子间氢键的形成 故有分子内氢键的化合物的沸点 熔点不是很高 H2O分子间 HF分子间氢键很强 以致于分子发生缔合 经常以 H2O 2 H2O 3和 HF 2 HF 3形式存在 而其中 H2O 2的排列最紧密 且4 时 H2O 2比例最大 故4 时水的密度最大 有分子内氢键m p 44 45 没有分子内氢键m p 113 114 若没有氢键 地球将是什么状况 如果没有氢键水的沸点将是多少 如果没有氢键存在 那么常温下水将完全以气态存在 地球表面的海洋 河流 动植物体细胞内的水全部以气态存在 地球将不会出现生命世界 是一个死寂的世界 离子极化 了解 离子在电场中产生诱导偶极的现象称为离子极化现象 离子具有变形性 所以可以被电场极化 离子作为带电微粒 自身又可以起电场作用 去使其它离子变形 离子这种能力称为极化能力 故离子有二重性 变形性和极化能力 一般阳离子考虑极化性 阴离子考虑变形性 1影响变形性的因素 了解 1 简单离子r大则变形性大 故阴离子的变形性显得主要 阳离子中只有r相当大的如Hg2 Pb2 Ag 等才考虑其变形性 2 复杂阴离子变形性小SO42 ClO4 NO3 r虽大 但离子对称性高 中心氧化数又高 拉电子能力强 不易变形 电荷数的代数值越大 变形性越小 如Si4 Al3 Mg2 Na Ne F O2 电子构型 外层 次外层 电子越多 变形性越大 Na Cu Ca2 Cd2 综合考虑 变形性大的有I S2 Ag Hg2 Pb2 变形性小的有Be2 Al3 Si4 SO42 等 2影响极化能力的因素 了解 极化能力的实质是离子作为电场时电场强度的体现 r小则极化能力强 因此Na K Rb Cs Li 的极化能力很大 H 的体积和半径均极小 故极化能力最强 r相近 电荷相同时 外层电子数越多 极化能力越强 原因是外层电子对核的中和较小 故有效电荷高些 Pb2 Zn2 18 18 2 Fe2 Ni2 8 18 Ca2 Mg2 8e r相近时 电荷数越高极化能力越强 Mg2 8e 65pm Ti4 8e 68pm 3离子极化对化学键类型的影响 掌握 离子键是离子之间的引力 正离子的电子转移给了负离子 当极化能力强的正离子和变形性大的负离子接近时 发生极化现象 负离子的电子云变形 即负离子的电子被拉向两核之间 使两核间的电子云密度增大 于是离子键的百分数减少 共价键的百分数增大 离子键向共价键过渡 离子极化的结果使离子晶体中出现离子对或分子单位 离子晶体向分子晶体过渡 这种过渡则使得物质的熔点 沸点降低 在水中的溶解性降低 键型的改变 离子键 共价键 例如 纯的液态HCl为什么不导电 溶解度AgF AgCl AgBr AgI离子键过渡键共价键 从离子键强度考虑 Al2O3 3对 2应比MgO 2对 2的离子键强 m p 高 但事实并非如此 这说明了Al2O3的共价成份比MgO大 离子键和共价键不是绝对的 离子键与共价键之间的联系可以通过下面的例题得到说明 从离子极化理论考虑 因为Al3 的极化能力强 造成Al2O3比MgO更倾向于分子晶体 例1测得KBr的 10 41D 键长282pm 通过计算 说明键的离子性百分数 解 282pm 2 82 10 10m 即2 82 由 qd 故q d 10 41 4 8 2 82 0 77 电子的电量 在K Br 上的电荷不是 1 1 而是0 77 其余电荷为共用 即为共价成份 故键的离子性百分数为77 4相互极化Al2O3中Al3 对O2 施加电场作用 使O2 变形 当然O2 对Al3 也有极化能力 但Al3 变形性极小 故这部分作用不必考虑 但正离子若不是8e的Al3 而是 18 2 e 18e的正离子 不考虑自身的变形性则是不行的 讨论ZnI2CdI2HgI2三者的离子极化问题 若只考虑Zn2 Cd2 Hg2 对I 的极化作用 应得出ZnI2的极化程度最大的结论 因为三者的电荷相等 电子层结构相同 而Zn2 的r最小 既考虑阳离子对阴离子的极化 又考虑阴离子对阳离子的极化 总的结果称相互极化 但这与实验结果是不相符的 即ZnI2的熔点 沸点低 而HgI2的熔点 沸点高 结论 在遇到阳离子为Pb2 Ag Hg2 等时 要注意用相互极化解释问题 原因在于没有考虑Zn2 Cd2 Hg2 的变形性 没有考虑相互极化 Zn2 的变形性最小 Hg2 的变形性最大 故相互极化的总结果是HgI2最大 ZnI2 CdI2 HgI2从左到右 熔点和溶解度依次降低 由于H 的极化能力极强 这种反极化作用导致O N键结合力减弱 所以硝酸在较低的温度下将分解 生成NO2 HNO3分子中 H 对与其邻近的氧原子的极化 与N V 对这个氧原子的极化作用的效果相反 4HNO3 4NO2 2H2O O2 我们称H 的极化作用为反极化作用 就是与N V 的极化作用相比较而言的 Li 的极化能力次于H 但强于Na 故稳定性关系有HNO3 LiNO3 NaNO3结论 一般含氧酸的盐比含氧酸稳定 例如H2SO3 H2S2O3等得不到纯品 但其盐是比较稳定的 硝酸的稳定性远高于亚硝酸 AgNO3444 分解 AgNO2140 分解 其原因就是N V 的极化能力比N III 的极化能力强 或者说抵抗Ag H 等阳离子的反极化作用的能力强 以上是从阳离子的反极化能力考虑问题 若阳离子相同 则化合物的稳定性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论