第五章 图像变换.ppt_第1页
第五章 图像变换.ppt_第2页
第五章 图像变换.ppt_第3页
第五章 图像变换.ppt_第4页
第五章 图像变换.ppt_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图像变换的作用傅立叶变换离散傅立叶变换傅立叶变换的性质二维傅立叶变换离散余弦变换 第五章图像变换 一 图像变换的作用 图像变换的定义是将图像从空域变换到其它域 如频域 的数学变换图像变换的作用我们人类视觉所感受到的是在空间域和时间域的信号 但是 往往许多问题在频域中讨论时 有其非常方便分析的一面 1 方便处理2 便于抽取特性 常用的变换傅立叶变换FourierTransform2 离散余弦变换DiscreteCosineTransform3 沃尔什 哈达玛变换Walsh HadamardTransform 二 傅立叶变换 傅立叶变换的作用 1 可以得出信号在各个频率点上的强度 2 可以将卷积运算化为乘积运算 3 傅氏变换和线性系统理论是进行图像恢复和重构的重要手段 4 傅立叶变换能使我们从空间域与频率域两个不同的角度来看待图像的问题 有时在空间域无法解决的问题在频域却是显而易见的 傅立叶变换的定义 傅立叶变换 若f x 为一维连续实函数 则它的傅里叶变换可定义为 傅立叶逆变换定义如下 函数f x 和F u 被称为傅立叶变换对 即对于任一函数f x 其傅立叶变换F u 是惟一的 反之 对于任一函数F u 其傅立叶逆变换f x 也是惟一的 傅里叶变换的条件 傅里叶变换在数学上的定义是严密的 它需要满足如下狄利克莱条件 1 具有有限个间断点 2 具有有限个极值点 3 绝对可积 F u 可以表示为如下形式 F u 称为F u 的模 也称为函数f x 的傅立叶谱 称为F u 的相角 称为函数f x 的能量谱或功率谱 高斯函数的定义为 例1高斯函数的傅立叶变换 根据傅立叶变换的定义可得 令x ju t 上式可以化为 结论 与 即 高斯函数的傅立叶变换依然是高斯函数 为傅立叶变换函数对 例2 矩形函数 矩形函数形式如下 根据傅立叶变换的定义 其傅立叶变换如下 可得矩形函数f x 的傅立叶频谱为 几何图形如下页图 b 所示 线性系统与傅立叶变换 傅立叶变换在图像滤波中的应用首先 我们来看Fourier变换后的图像 中间部分为低频部分 越靠外边频率越高 因此 我们可以在Fourier变换图中 选择所需要的高频或是低频滤波 傅立叶变换在图像压缩中的应用变换系数刚好表现的是各个频率点上的幅值 在小波变换没有提出时 用来进行压缩编码 考虑到高频反映细节 低频反映景物概貌的特性 往往认为可将高频系数置为0 骗过人眼 傅立叶变换在卷积中的应用直接进行时域中的卷积运算是很复杂的 傅立叶变换将时域的卷积变换为频域的乘积 三 离散傅立叶变换 离散傅立叶变换的定义 要在数字图像处理中应用傅立叶变换 还需要解决两个问题 一是在数学中进行傅立叶变换的f x 为连续 模拟 信号 而计算机处理的是数字信号 图像数据 二是数学上采用无穷大概念 而计算机只能进行有限次计算 通常 将受这种限制的傅立叶变换称为离散傅立叶变换 DiscreteFourierTransform DFT 离散傅立叶变换 离散傅立叶变换的定义 离散傅立叶正变换 离散傅立叶逆变换 四 傅立叶变换的性质 共轭对称性加法定理位移定理相似性定理卷积定理能量保持定理 共轭对称性 加法定理 位移定理 相似性定理结论 一个 窄 的函数有一个 宽 的频谱 旋转不变性 由旋转不变性可知 如果时域中离散函数旋转 角度 则在变换域中该离散傅立叶变换函数也将旋转同样的角度 离散傅立叶变换的旋转不变性如图所示 图离散傅立叶变换的旋转不变性 a 原始图像 b 原始图像的傅立叶频谱 c 旋转45 后的图像 d 图像旋转后的傅立叶频谱 卷积定理 能量保持定理 五 二维傅立叶变换 1 二维连续函数傅立叶变换的定义 二维傅立叶正变换 二维傅立叶逆变换 2 二维离散函数傅立叶变换的定义 根据一维离散傅立叶变换的定义和二维连续傅立叶变换理论 对于一个具有M N个样本值的二位离散序列f x y x 0 1 2 3 M 1 y 0 1 2 3 N 1 其傅立叶变换为 1 二维离散傅立叶正变换 2 二维离散傅立叶逆变换 若已知频率二维序列F u v u 0 1 2 3 M 1 v 0 1 2 3 N 1 则二维离散序列F u v 的傅立叶逆变换定义为 x y和 u v 分别为空间域采样间隔和频率域采样间隔两者之间满足如下关系 式中序列R u v 和I u v 分别表示离散序列F u v 的实序列和虚序列 二维序列f x y 的频谱 傅立叶幅度谱 相位谱和能量谱 功率谱 分别如下 F u v 可以表示为如下形式 1 线性特性 3 二维离散傅立叶变换的性质 1 比例性质 3 平移性质 二维傅立叶变换的移位特性表明 当用乘以f x y 然后再进行乘积的离散傅里叶变换时 可以使空间频率域u v平面坐标系的原点从 0 0 平移到 u0 v0 的位置 4 可分离性 二维傅立叶变换的可分离特性表明 一个二维傅立叶变换可通过二次一维傅立叶变换来完成 即 第一次先对y进行一维傅立叶变换 在此基础上对x进行一维傅立叶变换 变量分离步骤如图所示 若已知频率二维序列F u v 则二维可分离性对傅立叶逆变换同样适应 逆变换的分离性也同样可以分解为两次一维傅立叶变换 5 周期性 如果二维离散函数f x y 的傅里叶变换为F u v 则傅立叶变换及其逆变换存在如下周期特性 6 共轭对称性 7 旋转不变性 图像f x y 可以表示为f r 同样 空间频率域的F u v 采用极坐标可以表示为F 二维离散傅立叶存在如下旋转特性 a 原始图像 b DFT变换 c 原始图像旋转45 d 旋转之后DFT变换结果 8 微分性质 9 平均值性质平均值定义如下 平均值性质如下 即 结论 二维离散函数的平均值等于其傅立叶变换在频率原点处值的1 MN 二维傅立叶变换 幅值及相位 意义 左边一列 上方为原始图像 下方为本图的相关说明说明 中间一列 上图幅值谱 下图为根据幅值谱的傅立叶逆变换 忽略相位信息 设相位为0 右边一列 上图相位谱 下图为根据相位谱的傅立叶逆变换 忽略幅值信息 设幅值为某一常数 图像的说明 1 问题的提出 傅立叶变换的一个最大的问题是 它的参数都是复数 在数据的描述上相当于实数的两倍 为此 我们希望有一种能够达到相同功能但数据量又不大的变换 在此期望下 产生了DCT变换 六 离散余弦变换 2 正变换 3 逆变换 其中 4 DCT变换的应用 余弦变换实际上是傅立叶变换的实数部分 余弦变换主要用于图像的压缩 如目前的国际压缩标准的JPEG格式中就用到了DCT变换 具体的做法与DFT相似 给高频系数大间隔量化 低频部分小间隔量化 返回 返回 Fourier变换的高通滤波 另一幅图像效果 压缩率为 1 7 1 压缩率为 2 24 1 压缩率为 3 3 1 返回 压缩率为 8 1 1 压缩率为 10 77 1 压缩率为 16 1 1 返回 Fourier变换的低通滤波 七 哈达玛正变换 1 一维哈达玛正变换 设f x 表示N点的一维离散序列 则一维哈达玛变换如下 u 0 1 2 3 N 1 其中 g x u 是一维哈达玛变换的核 定义如下 式中 u 0 1 2 N 1 x 0 1 2 N 1 N是哈达玛变换的阶数 bi z 是z的二进制数的第i位数值 取值为0或1 2 一维哈达玛逆变换 h x u 是一维哈达玛逆变换的核逆变换核与正变换核相等 即 哈达玛变换的阶数具有规律性 即按照 规律递升 高阶哈达玛矩阵可以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论