高考数学一轮课件优化方案(理科)第十章 空间中的平行关系新人教A版10章4课时.ppt_第1页
高考数学一轮课件优化方案(理科)第十章 空间中的平行关系新人教A版10章4课时.ppt_第2页
高考数学一轮课件优化方案(理科)第十章 空间中的平行关系新人教A版10章4课时.ppt_第3页
高考数学一轮课件优化方案(理科)第十章 空间中的平行关系新人教A版10章4课时.ppt_第4页
高考数学一轮课件优化方案(理科)第十章 空间中的平行关系新人教A版10章4课时.ppt_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4课时空间中的平行关系 1 直线与平面平行的判定与性质 1 判定定理 平面外一条直线与平行 则该直线与此平面平行 2 性质定理 一条直线与一个平面平行 则过这条直线的任一平面与此平面的交线与该直线 基础知识梳理 此平面内的一条直线 平行 2 平面与平面平行的判定与性质 1 判定定理 一个平面内的与另一个平面平行 则这两个平面平行 2 性质定理 如果两个平行平面同时和第三个平面相交 那么它们的交线 基础知识梳理 两条相交直线 平行 基础知识梳理 思考 能否由线线平行得到面面平行 思考 提示 可以 只要一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线 这两个平面就平行 1 两条直线a b满足a b b 则a与平面 的关系是 a a b a与 相交c a与 不相交d a 答案 c 三基能力强化 2 已知直线a b和平面 则在下列命题中 真命题为 a 若a 则a b 若 a 则a c 若 a b 则a bd 若a b 则a b答案 b 三基能力强化 3 教材习题改编 a b c为三条不重合的直线 为三个不重合的平面 现给出六个命题 三基能力强化 三基能力强化 其中正确的命题是 a b c d 答案 c 三基能力强化 4 正方体abcd a1b1c1d1中 e是dd1的中点 则bd1与平面ace的位置关系为 5 过三棱柱abc a1b1c1任意两条棱的中点作直线 其中与平面abb1a1平行的直线共有 条 三基能力强化 答案 平行 答案 6 判定直线与平面平行 主要有三种方法 1 利用定义 常用反证法 2 利用判定定理 关键是找平面内与已知直线平行的直线 可先直观判断平面内是否已有 若没有 则需作出该直线 常考虑三角形的中位线 平行四边形的对边或过已知直线作一平面找其交线 课堂互动讲练 3 利用面面平行的性质定理 当两平面平行时 其中一个平面内的任一直线平行于另一平面 课堂互动讲练 特别提醒 线面平行关系没有传递性 即平行线中的一条平行于一平面 另一条不一定平行于该平面 课堂互动讲练 正方形abcd与正方形abef所在平面相交于ab 在ae bd上各有一点p q 且ap dq 求证 pq 平面bce 课堂互动讲练 思路点拨 证明 法一 如图所示 作pm ab交be于m 作qn ab交bc于n 连结mn pq 正方形abcd和正方形abef有公共边ab ae bd 又 ap dq pe qb 又 pm ab qn 课堂互动讲练 pm綊qn 即四边形pmnq为平行四边形 又mn 平面bce pq 平面bce pq 平面bce 课堂互动讲练 法二 如图所示 连结aq 并延长交bc于k 连结ek ae bd ap dq pe bq 课堂互动讲练 课堂互动讲练 hq ad 即hq bc 又ph hq h bc eb b 平面phq 平面bce 而pq 平面phq pq 平面bce 课堂互动讲练 名师点评 法一 法二均是依据线面平行的判定定理在平面bce内寻找一条直线l 证得它与pq平行 特别注意直线l的寻找往往是通过过直线pq的平面与平面bce相交的交线来确定 法三是利用面面平行的性质 即若平面 l 则l 课堂互动讲练 1 利用定义 常用反证法 2 利用判定定理 转化为判定一个平面内的两条相交直线分别平行于另一个平面 客观题中 也可直接利用一个平面内的两条相交线分别平行于另一个平面内的两条相交线来证明两平面平行 课堂互动讲练 课堂互动讲练 课堂互动讲练 如图所示 正三棱柱abc a1b1c1各棱长为4 e f g h分别是ab ac a1c1 a1b1的中点 求证 平面a1ef 平面bcgh 思路点拨 本题证面面平行 可证明平面a1ef内的两条相交直线分别与平面bcgh平行 然后根据面面平行的判定定理即可证明 课堂互动讲练 证明 abc中 e f分别为ab ac的中点 ef bc 又 ef 平面bcgh bc 平面bcgh ef 平面bcgh 又 g f分别为a1c1 ac的中点 课堂互动讲练 四边形a1fcg为平行四边形 a1f gc 又 a1f 平面bcgh cg 平面bcgh a1f 平面bcgh 又 a1f ef f 平面a1ef 平面bcgh 课堂互动讲练 名师点评 利用面面平行的判定定理证明两个平面平行是常用的方法 即若a b a b a b o 则 课堂互动讲练 在本例中 若d是bc上一点 且a1b 平面ac1d d1是b1c1的中点 求证 平面a1bd1 平面ac1d 课堂互动讲练 互动探究 证明 如图所示 连结a1c交ac1于点e 四边形a1acc1是平行四边形 e是a1c的中点 连结ed 课堂互动讲练 a1b 平面ac1d 平面a1bc 平面ac1d ed a1b ed e是a1c的中点 d是bc的中点 又 d1是b1c1的中点 bd1 c1d a1d1 ad 又a1d1 bd1 d1 平面a1bd1 平面ac1d 课堂互动讲练 利用线面平行的性质 可以实现由线面平行到线线平行的转化 在平时的解题过程中 若遇到线面平行这一条件 就需在图中找 或作 过已知直线与已知平面相交的平面 这样就可以由性质定理实现平行转化 课堂互动讲练 课堂互动讲练 如图 已知四边形abcd是平行四边形 点p是平面abcd外一点 m是pc的中点 在dm上取一点g 过g和ap作平面交平面bdm于gh 求证 ap gh 思路点拨 要证ap gh 只需证pa 面bdm 证明 如图 连结ac 设ac交bd于o 连结mo 四边形abcd是平行四边形 o是ac的中点 课堂互动讲练 又 m是pc的中点 mo pa 又 mo 平面bdm pa 平面bdm pa 平面bdm 又经过pa与点g的平面交平面bdm于gh ap gh 课堂互动讲练 名师点评 利用线面平行的性质定理证明线线平行 关键是找出过已知直线的平面与已知平面的交线 课堂互动讲练 平面与平面平行的判定与性质 同直线与平面平行的判定与性质一样 体现了转化与化归的思想 三种平行关系如图 课堂互动讲练 性质过程的转化实施 关键是作辅助平面 通过作辅助平面得到交线 就可把面面平行化为线面平行并进而化为线线平行 注意作平面时要有确定平面的依据 课堂互动讲练 课堂互动讲练 解题示范 本题满分12分 如图 直线ac df被三个平行平面 所截 1 是否一定有ad be cf 2 若 试判断 与 的大小关系 课堂互动讲练 思路点拨 本题是开放性题目 是近年来高考热点 利用面面平行的性质证明bg ch 从而可得 课堂互动讲练 解 1 平面 平面 平面 与 没有公共点 但不一定总有ad be 同理不总有be cf 不一定有ad be cf4分 2 过a点作df的平行线 交 于g h两点 ah df 过两条平行线ah df的平面交平面 于ad ge hf 根据两平面平行的性质定理 有ad ge hf 6分 课堂互动讲练 ag de 同理gh ef 又过ac ah两相交直线的平面与平面 的交线为bg ch 9分根据两平面平行的性质定理 有bg ch 课堂互动讲练 误区警示 1 小题易出错 其原因是把ac df习惯地认为是相交直线 课堂互动讲练 本题满分12分 如图 已知平面 平面 平面 且 位于 与 之间 点a d c f ac b df e 课堂互动讲练 高考检阅 课堂互动讲练 解 1 证明 如图 连结bm em be 平面acf bm 平面acf cf 课堂互动讲练 课堂互动讲练 课堂互动讲练 1 对线面平行 面面平行的认识一般按照 定义 判定定理 性质定理 应用 的顺序 其中定义中的条件和结论是相互充要的 它既可以作为判定线面平行和面面平行的方法 又可以作为线面平行和面面平行的性质来应用 规律方法总结 2 在解决线面 面面平行的判定时 一般遵循从 低维 到 高维 的转化 即从 线线平行 到 线面平行 再到 面面平行 而在应用性质定理时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论