九年级数学-相似三角形-单元进阶练习题(二).doc_第1页
九年级数学-相似三角形-单元进阶练习题(二).doc_第2页
九年级数学-相似三角形-单元进阶练习题(二).doc_第3页
九年级数学-相似三角形-单元进阶练习题(二).doc_第4页
九年级数学-相似三角形-单元进阶练习题(二).doc_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

S-WNPS培优系列 九年级数学 相似三角形 单元进阶练习题 【难度:】注:由于文档内容过多,分为(一)(二)两部分。给您带来不便,敬请原谅!15、如图1,已知菱形ABCD的边长为,点A在x轴负半轴上,点B在坐标原点点D的坐标为(- ,3),抛物线y=ax2+b(a0)经过AB、CD两边的中点(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BECD于点E,交抛物线于点F,连接DF、AF设菱形ABCD平移的时间为t秒(0t 3 )是否存在这样的t,使ADF与DEF相似?若存在,求出t的值;若不存在,请说明理由;连接FC,以点F为旋转中心,将FEC按顺时针方向旋转180,得FEC,当FEC落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围(写出答案即可)16、如图,在矩形ABCO中,AO=3,tanACB=,以O为坐标原点,OC为轴,OA为轴建立平面直角坐标系。设D,E分别是线段AC,OC上的动点,它们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单位的速度从点C向点O运动,设运动时间为秒。(1)求直线AC的解析式;(2)用含的代数式表示点D的坐标;(3)当为何值时,ODE为直角三角形?(4)在什么条件下,以RtODE的三个顶点能确定一条对称轴平行于轴的抛物线?并请选择一种情况,求出所确定抛物线的解析式。17、如图,O1、O2相交于P、Q两点,其中O1的半径r1=2,O2的半径r2=过点Q作CDPQ,分别交O1和O2于点CD,连接CP、DP,过点Q任作一直线AB交O1和O2于点AB,连接AP、BP、ACDB,且AC与DB的延长线交于点E(1)求证:;(2)若PQ=2,试求E度数18、如图1,在菱形ABCD中,AC=2,BD=2 3 ,AC,BD相交于点O(1)求边AB的长;(2)如图2,将一个足够大的直角三角板60角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G判断AEF是哪一种特殊三角形,并说明理由;旋转过程中,当点E为边BC的四等分点时(BECE),求CG的长19、已知,在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于C、D两点)。连接PM,过点P作PM的垂线与射线DA相交于点E(如图)。设CP=x,DE=y。(1)写出y与x之间的函数关系式 ;(2)若点E与点A重合,则x的值为 ;(3)是否存在点P,使得点D关于直线PE的对称点D落在边AB上?若存在,求x的值;若不存在,请说明理由。20、ABC中,AB=AC,D为BC的中点,以D为顶点作MDN=B(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与ADE相似的三角形(2)如图(2),将MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论(3)在图(2)中,若AB=AC=10,BC=12,当DEF的面积等于ABC的面积的时,求线段EF的长21、如图,等圆O1和O2相交于A、B两点,O1经过O2的圆心,顺次连接A、O1、B、O2(1)求证:四边形AO1BO2是菱形;(2)过直径AC的端点C作O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE2O2D;(3)在(2)的条件下,若AO2D的面积为1,求BO2D的面积22、如图,在平面直角坐标系中,直线:y=2xb (b0)的位置随b的不同取值而变化 (1)已知M的圆心坐标为(4,2),半径为2 当b=时,直线:y=2xb (b0)经过圆心M: 当b=时,直线:y=2xb(b0)与OM相切: (2)若把M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2). 设直线扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,23、如图,在ABC中,ABAC,A30,以AB为直径的O交B于点D,交AC于点,连结DE,过点B作BP平行于DE,交O于点P,连结EP、CP、OP(1)(3分)BDDC吗?说明理由;(2)(3分)求BOP的度数;(3)(3分)求证:CP是O的切线;如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目在进行小组交流的时候,小明说:“设OP交AC于点G,证AOGCPG”;小强说:“过点C作CHAB于点H,证四边形CHOP是矩形”24、如图,菱形ABCD的边长为2cm,DAB=60点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动当P运动到C点时,P、Q都停止运动设点P运动的时间为ts(1)当P异于AC时,请说明PQBC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,P与边BC分别有1个公共点和2个公共点?25、 已知:在ABC中,ACB=900,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MNAC于点N,PQAB于点Q,A0=MN (1)如图l,求证:PC=AN; (2)如图2,点E是MN上一点,连接EP并延长交BC于点K,点D是AB上一点,连接DK,DKE=ABC,EFPM于点H,交BC延长线于点F,若NP=2,PC=3,CK:CF=2:3,求DQ的长26、类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若,求的值。(1)尝试探究 在图1中,过点E作交BG于点H,则AB和EH的数量关系是 ,CG和EH的数量关系是 ,的值是 (2)类比延伸如图2,在原题的条件下,若则的值是 (用含的代数式表示),试写出解答过程。(3)拓展迁移 如图3,梯形ABCD中,DCAB,点E是BC延长线上一点,AE和BD相交于点F,若,则的值是 (用含的代数式表示). 27、 如图,ABC和DEF是两个全等的等腰直角三角形,BAC=EDF=90,DEF的顶点E与ABC的斜边BC的中点重合将DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q(1)如图,当点Q在线段AC上,且AP=AQ时,求证:BPECQE;(2)如图,当点Q在线段CA的延长线上时,求证:BPECEQ;并求当BP= ,CQ=时,P、Q两点间的距离 (用含的代数式表示)新 课 标 第一网28、如图,在等腰梯形ABCD中,ABDC,AB=,DC=,高CE=,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为、被直线RQ扫过的图形面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为秒.(1)填空:AHB= ;AC= ;(2)若,求;(3)设,求的变化范围.29、已知梯形ABCD,ADBC,ABBC,AD1,AB2,BC3(1)如图1,P为AB边上的一点,以PD、PC为边作PCQD,请问对角线PQ,DC的长能否相等,为什么?(2)如图2,若P为AB边上一点,以PD,PC为边作PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由(3)若P为AB边上任意一点,延长PD到E,使DEPD,再以PE、PC为边作PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由(4)如图3,若P为DC边上任意一点,延长PA到E,使AEnPA(n为常数),以PE、PB为边作PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由30、如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N求证:(1);(2)31、如图,AB是O的直径,C是弧BD的中点,CEAB,垂足为E,BD交CE于点F(1)求证:;(2)若,O的半径为3,求BC的长 32、如图,在平面直角坐标系中,直线=分别与轴,轴相交于两点,点是轴的负半轴上的一个动点,以为圆心,3为半径作.(1)连结,若,试判断与轴的位置关系,并说明理由;(2)当为何值时,以与直线的两个交点和圆心为顶点的三角形是正三角形?考答案15、解:(1)由题意得AB的中点坐标为(3 ,0),CD的中点坐标为(0,3), 分别代入y=ax2+b,得,解得, 。这条抛物线的函数解析式为y=x23。 (2)存在。如图2所示,在RtBCE中,BEC=90,BE=3,BC= , 。C=60,CBE=30。EC=BC=,DE=。 又ADBC,ADC+C=180。ADC=180-60=120要使ADF与DEF相似,则ADF中必有一个角为直角。(I)若ADF=90,EDF=12090=30。在RtDEF中,DE=,得EF=1,DF=2。又E(t,3),F(t,t2+3),EF=3(t23)=t2。t2=1。t0,t=1 。 此时,。又ADF=DEF,ADFDEF。 (II)若DFA=90,可证得DEFFBA,则。设EF=m,则FB=3m。 ,即m23m6=0,此方程无实数根。此时t不存在。 (III)由题意得,DAFDAB=60,DAF90,此时t不存在。 综上所述,存在t=1,使ADF与DEF相似。16、解:(1)根据题意,得CO=AB=4,则A(0,3),B(4,3),直线AC:;(2)分别作DFAO,DHCO,垂足分别为F,H,则有ADFDCHACO,AD:DC:AC=AF:DH:AO=FD:HC:OC,而AD=(其中0),OC=AB=4,AC=5,FD=AD=,AF=AD=,DH=,HC=,D(,);(3)CE=,E(,0),OE=OC-CE=4-,HE=|CH-CE|=,则OD2=DH2+OH2=,DE2=DH2+HE2=,当ODE为Rt时,有OD2+DE2=OE2,或OD2+OE2=DE2,或DE2+OE2=OD2,即,或,或,上述三个方程在0内的所有实数解为,;(4)当DOOE,及DEOE时,即和时,以RtODE的三个顶点不确定对称轴平行于轴的抛物线,其它两种情况都可以各确定一条对称轴平行于轴的抛物线D(,),E(4-,0)当时,D(,),E(3,0),因为抛物线过O(0,0),所以设所求抛物线为,将点D,E坐标代入,求得,所求抛物线为(当时,所求抛物线为)17、考点:相交两圆的性质;三角形内角和定理;圆周角定理;相似三角形的判定与性质;解直角三角形。解答:(1)证明:O1的半径r1=2,O2的半径r2=,PC=4,PD=2,CDPQ,PQC=PQD=90,PCPD分别是O1、O2的直径,在O1中,PAB=PCD,在O2中,PBA=PDC,PABPCD,=,即=(2)解:在RtPCQ中,PC=2r1=4,PQ=2,cosCPQ=,CPQ=60,在RtPDQ中,PD=2r2=2,PQ=2,sinPDQ=,PDQ=45,CAQ=CPQ=60,PBQ=PDQ=45,又PD是O2的直径,PBD=90,ABE=90PBQ=45在EAB中,E=180CAQABE=75,答:E的度数是7518、【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理;菱形的性质【专题】几何综合题【分析】(1)根据菱形的性质,确定AOB为直角三角形,然后利用勾股定理求出边AB的长度;(2)本小问为探究型问题要点是确定一对全等三角形ABEACF,得到AE=AF,再根据已知条件EAF=60,可以判定AEF是等边三角形;本小问为计算型问题要点是确定一对相似三角形CAECFG,由对应边的比例关系求出CG的长度解答:【解答】解:(1)四边形ABCD是菱形,AOB为直角三角形,且OA=AC=1,OB=BD= 3 在RtAOB中,由勾股定理得:AB=(2)AEF是等边三角形理由如下:由(1)知,菱形边长为2,AC=2,ABC与ACD均为等边三角形,BAC=BAE+CAE=60,又EAF=CAF+CAE=60,BAE=CAF在ABE与ACF中,BAE=CAF ,AB=AC=2 ,EBA=FCA=60,ABEACF(ASA),AE=AF,AEF是等腰三角形,又EAF=60,AEF是等边三角形BC=2,E为四等分点,且BECE,CE=,BE=由知ABEACF,CF=BE=EAC+AEG+EGA=GFC+FCG+CGF=180(三角形内角和定理),AEG=FCG=60(等边三角形内角),EGA=CGF(对顶角)EAC=GFC在CAE与CFG中, EAC=GFC ,ACE=FCG=60,CAECFG ,即,解得:CG=【点评】本题是几何综合题,综合考查了相似三角形、全等三角形、四边形(菱形)、三角形(等边三角形和等腰三角形)、勾股定理等重要知识点虽然涉及考点众多,但本题着重考查基础知识,难度不大,需要同学们深刻理解教材上的基础知识,并能够熟练应用19、解:(1)y=x24x。 (2)或。 (3)存在。 过点P作PHAB于点H。则 点D关于直线PE的对称点D落在边AB上, P D=PD=4x,E D=ED= y=x24x,EA=ADED= x24x2,P DE=D=900。 在RtDP H中,PH=2, DP =DP=4x,DH=。 E DA=1800900P DH=900P DH=DP H,P DE=P HD =900, E DADP H。,即, 即,两边平方并整理得,2x24x1=0。解得。当时,y=,此时,点E已在边DA延长线上,不合题意,舍去(实际上是无理方程的增根)。当时,y=,此时,点E在边AD上,符合题意。当时,点D关于直线PE的对称点D落在边AB上。20、考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;旋转的性质。专题:几何综合题。分析:(1)根据等腰三角形的性质以及相似三角形的判定得出相似三角形即可;(2)利用已知首先求出BFD=CDE,即可得出BDFCED,再利用相似三角形的性质得出,进而得出BDFCEDDEF (3)首先利用DEF的面积等于ABC的面积的,求出DH的长,进而利用SDEF的值求出EF即可解答:(1)图(1)中与ADE相似的有ABD,ACD,DCE证明:AB=AC,D为BC的中点,ADBC,B=C,BAD=CAD,又MDN=B,ADEABD,同理可得:ADEACD,MDN=C=B,B+BAD=90,ADE+EDC=90,B=MDN,BAD=EDC,B=C,ABDDCE,ADEDCE,(2)BDFCEDDEF,证明:B+BDF+BFD=180EDF+BDF+CDE=180,又EDF=B,BFD=CDE,由AB=AC,得B=C,BDFCED,BD=CD,又C=EDF,BDFCEDDEF (3)连接AD,过D点作DGEF,DHBF,垂足分别为G,HAB=AC,D是BC的中点,ADBC,BD=BC=6在RtABD中,AD2=AB2BD2,AD=8SABC=BCAD=128=48SDEF=SABC=48=12又ADBD=ABDH,DH=,BDFDEF,DFB=EFD DGEF,DHBF,DH=DG=SDEF=EFDG=12,EF=5点评:此题主要考查了相似三角形判定与性质以及三角形面积计算,熟练应用相似三角形的性质与判定得出对应用边与对应角的关系是解题关键21、证明:(1)O1与O2是等圆, 1分四边形是菱形 2分(2)四边形是菱形 3分CE是O1的切线,AC是O1的直径,90 ACEAO2D 即 ()四边形是菱形 ACD, 8分 , 9分 10分22、【答案】解:(1)10;。(2)由A(2,0)、B(6,0)、C(6,2),根据矩形的性质,得D(2,2)。如图,当直线经过A(2,0)时,b=4;当直线经过D(2,2)时,b=6;当直线经过B(6,0)时,b=12;当直线经过C(6,2)时,b=14。当0b4时,直线扫过矩形ABCD的面积S为0。当4b6时,直线扫过矩形ABCD的面积S为EFA的面积(如图1),在 y=2xb中,令x=2,得y=4b,则E(2,4b),令y=0,即2xb=0,解得x=,则F(,0)。AF=,AE=4b。S=。当6b12时,直线扫过矩形ABCD的面积S为直角梯形DHGA的面积(如图2),在 y=2xb中,令y=0,得x=,则G(,0),令y=2,即2xb=2,解得x=,则H(,2)。DH=,AG=。AD=2S=。当12b14时,直线扫过矩形ABCD的面积S为五边形DMNBA的面积=矩形ABCD的面积CMN的面积(如图2)在 y=2xb中,令y=2,即2xb=2,解得x=,则M(,0),令x=6,得y=12b,则N(6,12b)。MC=,NC=14b。S=。当b14时,直线扫过矩形ABCD的面积S为矩形ABCD的面积,面积为民8。综上所述。S与b的函数关系式为:。【考点】直线平移的性质,相似三角形的判定和性质,待定系数法,曲线上点的坐标与方程的关系,直线与圆相切的性质,勾股定理,解一元二次方程,矩形的性质。【分析】(1)直线y=2xb (b0)经过圆心M(4,2), 2=24b,解得b=10。如图,作点M垂直于直线y=2xb于点P,过点P作PHx轴,过点M作MHPH,二者交于点H。设直线y=2xb与x,y轴分别交于点A,B。 则由OABHMP,得。 可设直线MP的解析式为。 由M(4,2),得,解得。直线MP的解析式为。 联立y=2xb和,解得。 P()。 由PM=2,勾股定理得,化简得。 解得。(2)求出直线经过点A、B、C、D四点时b的值,从而分0b4,4b6,6b12,12b14,b14五种情况分别讨论即可。23、1)BD=DC1分连结AD,AB是直径,ADB=902分AB=AC,BD=DC3分(2)AD是等腰三角形ABC底边上的中线 BAD=CAD 弧BD与弧DE是等弧,BD=DE4分BD=DE=DC,DEC=DCE ABC中,AB=AC,A=30DCE=ABC=(18030)=75,DEC=75EDC=1807575=30BPDE,PBC=EDC=305分ABP=ABC-PBC=7530=45OB=OP,OBP=OPB=45,BOP=90 6分(3)证法一:设OP交AC于点G,则AOG=BOP =90在RtAOG中,OAG=30,7分又,又AGO=CGPAOGCPG8分GPC=AOG=90CP是的切线9分证法二:过点C作CHAB于点H,则BOP=BHC=90,POCH在RtAHC中,HAC=30,7分又,PO=CH,四边形CHOP是平行四边形四边形CHOP是矩形8分OPC=90,CP是的切线9分24、考点:直线与圆的位置关系;等边三角形的判定与性质;菱形的性质;切线的性质;相似三角形的判定与性质。专题:几何综合题。分析:(1)连接BD交AC于O,构建直角三角形AOB利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知PAQCAB;然后根据“相似三角形的对应角相等”证得APQ=ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论;(2)如图2,P与BC切于点M,连接PM,构建RtCPM,在RtCPM利用特殊角的三角函数值求得PM=PC=,然后根据PM=PQ=AQ=t列出关于t的方程,通过解方程即可求得t的值;如图3,P过点B,此时PQ=PB,根据等边三角形的判定可以推知PQB为等边三角形,然后由等边三角形的性质以及(2)中求得t的值来确定此时t的取值范围;如图4,P过点C,此时PC=PQ,据此等量关系列出关于t的方程,通过解方程求得t的值解答:解:(1)四边形ABCD是菱形,且菱形ABCD的边长为2cm,AB=BC=2,BAC=DAB,又DAB=60(已知),BAC=BCA=30;如图1,连接BD交AC于O四边形ABCD是菱形,ACBD,OA=AC,OB=AB=1(30角所对的直角边是斜边的一半),OA=,AC=2OA=2,运动ts后,又PAQ=CAB,PAQCAB,APQ=ACB(相似三角形的对应角相等),PQBC(同位角相等,两直线平行)5分(2)如图2,P与BC切于点M,连接PM,则PMBC在RtCPM中,PCM=30,PM=PC=由PM=PQ=AQ=t,即=t解得t=46,此时P与边BC有一个公共点;如图3,P过点B,此时PQ=PB,PQB=PAQ+APQ=60PQB为等边三角形,QB=PQ=AQ=t,t=1时,P与边BC有2个公共点如图4,P过点C,此时PC=PQ,即2t=t,t=3当1t3时,P与边BC有一个公共点,当点P运动到点C,即t=2时,P过点B,此时,P与边BC有一个公共点,当t=46或1t3或t=2时,P与菱形ABCD的边BC有1个公共点;当46t1时,P与边BC有2个公共点点评:本题综合考查了菱形的性质、直线与圆的位置关系以及相似三角形的判定等性质解答(2)题时,根据P的运动过程来确定t的值,以防漏解 25、26、(1)(2)作EHAB交BG于点H,则AB=CD,EHABCD,CG=2EH(3)【提示】过点E作EHAB交BD的延长线于点H。27、考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;旋转的性质。解答:(1)证明:ABC是等腰直角三角形,B=C=45,AB=AC,AP=AQ,BP=CQ,E是BC的中点,BE=CE,在BPE和CQE中,BPECQE(SAS);(2)解:ABC和DEF是两个全等的等腰直角三角形,B=C=DEF=45,BEQ=EQC+C,即BEP+DEF=EQC+C,BEP+45=EQC+45,BEP=EQC,BPECEQ,BP=a,CQ=a,BE=CE,BE=CE=a,BC=3a,AB=AC=BCsin45=3a,AQ=CQAC=a,PA=ABBP=2a,连接PQ,在RtAPQ中,PQ=a28、29、考点:相似三角形的判定与性质;根的判别式;全等三角形的判定与性质;勾股定理;平行四边形的判定与性质。专题:代数几何综合题。分析:问题1:四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,然后利用矩形的性质,设PBx,可得方程x232(2x)218,由判别式0,可知此方程无实数根,即对角线PQ,DC的长不可能相等;问题2:在平行四边形PCQD中,设对角线PQ与DC相交于点G,可得G是DC的中点,过点Q作QHBC,交BC的延长线于H,易证得RtADPRtHCQ,即可求得BH4,则可得当PQAB时,PQ的长最小,即为4;问题3:设PQ与DC相交于点G,PECQ,PDDE,可得,易证得RtADPRtHCQ,继而求得BH的长,即可求得答案;问题4:作QHPE,交CB的延长线于H,过点C作CKCD,交QH的延长线于K,易证得与ADPBHQ,又由DCB45,可得CKH是等腰直角三角形,继而可求得CK的值,即可求得答案解答:解:问题1:四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,DPC90,AD1,AB2,BC3,DC2,设PBx,则AP2x,在RtDPC中,PD2PC2DC2,即x232(2x)218,化简得x22x30,(2)241380,方程无解,对角线PQ与DC不可能相等问题2:如图2,在平行四边形PCQD中,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论