




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
多边形的内角和 小明想设计一个内角和为2008 的多边形送给2008北京奥运 请问小明的想法能实现吗 如何证明四边形内角和为360 动动脑 e f 小结一下 请你选择喜欢的一种方法解答五边形 六边形的内角和多少 想一想 完成下表 试一试 n 2 3 2 1 0 4 3 2 1 n 3 1800 3600 5400 7200 n 2 1800 n边形的内角和等于 n 2 1800 这是一个从特殊到一般的思维过程 内角和为2008 的多边形可以设计出来吗 探究再现 1 填空题 1 八边形的内角和等于度 2 一个多边形的内角和等于1260 这个多边形是 边形 3 一个多边形的每一个内角都等于135 则这个多边形边数是 4 若十二边形每个内角都相等 则每个内角是 度 5 下列哪一个度数可成为某个多边形的内角和 a 240 b 600 c 1980 d 2180 1080 九 八 150 c 2 求下列图形中x的值 做一做 e 智力测试 1 一天小明爸爸给小明出了一道智力题考考他 将一个多边形截去一个角后 多边形的内角和将会 a 不变b 增加180 c 减少180 d 无法确定 请看课件 通过这节课的学习活动 你有哪些收获 感悟与反思 课堂小结 本节课你学到了哪些知识 2 已知内角和如何求边数 二 多边形的内角和公式的应用 一 多边形的内角和公式及其它的推导 1 已知边数如何求内角和 多边形内角和 三角形内角和 转化 n边形的内角和等于 n一2 180 一个公式一种解题思想一种认知规律 n一2 180 化归思想 从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中山货运从业资格证考试一共多少题
- 2025年云南货运从业资格证模拟考试试题题库
- 2024年七月份数据中心模块化机柜防震吊装协议
- 2025年七台河道路货运驾驶员从业资格证考试
- 榻榻米效果图在服装创业中的应用与展示
- 2025年新型电子封装材料项目建议书
- 2025年玻璃清洁剂合作协议书
- 股东出资义务证明责任类型化研究
- 餐饮场所安全保障措施
- 人类命运共同体理念下的“仁爱”哲学创新研究
- 2025年陕西农业发展集团有限公司(陕西省土地工程建设集团)招聘(200人)笔试参考题库附带答案详解
- 2025年03月中央社会工作部所属事业单位公开招聘11人笔试历年参考题库考点剖析附解题思路及答案详解
- 2025年中高端女装市场趋势与前景深度分析
- 2025北京清华附中高三(下)统练一数学(教师版)
- 2025-2030中国孵化器行业市场发展前瞻及投资战略研究报告
- 5.3基本经济制度 课件 2024-2025学年统编版道德与法治八年级下册
- Unit4 Breaking Boundaries 单元教学设计-2024-2025学年高中英语外研版(2019)选择性必修第二册
- T-CCTAS 61-2023 桥梁承重缆索抗火密封综合防护技术规程
- 2025慢性阻塞性肺病(GOLD)指南更新要点解读课件
- 2024年05月湖北中国邮政储蓄银行湖北省分行春季校园招考笔试历年参考题库附带答案详解
- GB/T 16895.36-2024低压电气装置第 7-722 部分:特殊装置或场所的要求电动车供电
评论
0/150
提交评论