




已阅读5页,还剩76页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6讲一次方程 组 及其应用第7讲一元二次方程及其应用第8讲分式方程及其应用第9讲一元一次不等式 组 及其应用 第二单元方程 组 与不等式 组 第6讲 一次方程 组 及其应用 第6讲一次方程 组 及其应用 第6讲 考点聚焦 考点1等式的概念与等式的性质 相等 第6讲 考点聚焦 考点2方程及相关概念 等式 方程的解 根 解方程 考点3一元一次方程的定义及解法 第6讲 考点聚焦 一 一 ax b 0 a 0 第6讲 考点聚焦 考点4二元一次方程组的有关概念 第6讲 考点聚焦 考点5二元一次方程组的解法 第6讲 考点聚焦 考点6一次方程 组 的应用 第6讲 考点聚焦 考点7常见的几种方程类型及等量关系 第6讲 考点聚焦 第6讲 归类示例 类型之一等式的概念及性质 命题角度 1 等式及方程的概念 2 等式的性质 例1如图 在第一个天平上 砝码A的质量等于砝码B加上砝码C的质量 如图 在第二个天平上 砝码A加上砝码B的质量等于3个砝码C的质量 请你判断 1个砝码A与 个砝码C的质量相等 图6 1 图6 1 2 第6讲 归类示例 类型之二一元一次方程的解法 命题角度 1 一元一次方程及其解的概念 2 解一元一次方程的一般步骤 第6讲 归类示例 例2 2011 滨州 第6讲 归类示例 分式的基本性质 等式性质2 等式性质1 去括号法则或乘法分配律 移项 合并同类项 系数化为1 等式性质2 类型之三二元一次方程 组 的有关概念 第6讲 归类示例 C 命题角度 1 二元一次方程 组 的概念 2 二元一次方程 组 的解的概念 例3 第6讲 归类示例 类型之四二元一次方程组的解法 命题角度 1 代入消元法 2 加减消元法 第6讲 归类示例 例4 2012 南京 第6讲 归类示例 1 在二元一次方程组中 若一个未知数能很好地表示出另一个未知数时 一般采用代入法 2 当两个方程中的某个未知数的系数相等或互为相反数时 或者系数均不为1时 一般采用加减消元法 第6讲 归类示例 类型之五利用一次方程 组 解决生活实际问题 命题角度 1 利用一元一次方程解决生活实际问题 2 利用二元一次方程组解决生活实际问题 第6讲 归类示例 例5 2012 无锡 某开发商进行商铺促销 广告上写着如下条款 投资者购买商铺后 必须由开发商代为租赁5年 5年期满后由开发商以比原商铺标价高20 的价格进行回购 投资者可以在以下两种购铺方案中作出选择 方案一 投资者按商铺标价一次性付清铺款 每年可获得的租金为商铺标价的10 第6讲 归类示例 方案二 投资者按商铺标价的八五折一次性付清铺款 2年后 每年可获得的租金为商铺标价的10 但要缴纳租金的10 作为管理费用 1 请问 投资者选择哪种购铺方案 5年后所获得的投资收益率更高 为什么 2 对同一标价的商铺 甲选择了购铺方案一 乙选择了购铺方案二 那么5年后两人获得的收益将相差5万元 问 甲 乙两人各投资了多少万元 第6讲 归类示例 第6讲 归类示例 第7讲 一元二次方程及其应用 第7讲一元二次方程及其应用 第7讲 考点聚焦 考点1一元二次方程的概念及一般形式 一 2 ax2 bx c 0 a 0 第7讲 考点聚焦 考点2一元二次方程的四种解法 第7讲 考点聚焦 第7讲 考点聚焦 考点3一元二次方程的根的判别式 第7讲 考点聚焦 两个不相等 两个相等 没有 考点4一元二次方程的应用 第7讲 考点聚焦 第7讲 归类示例 类型之一一元二次方程的有关概念 命题角度 1 一元二次方程的概念 2 一元二次方程的一般式 3 一元二次方程的解的概念 例1已知关于x的方程x2 bx a 0有一个根是 a a 0 则a b的值为 A 1B 0C 1D 2 A 解析 把x a代入x2 bx a 0 得 a 2 b a a 0 a2 ab a 0 所以a b 1 0 a b 1 故选择A 类型之二一元二次方程的解法 命题角度 1 直接开平方法 2 配方法 3 公式法 4 因式分解法 第7讲 归类示例 例2 2012 无锡 解方程 x2 4x 2 0 利用因式分解法解方程时 当等号两边有相同的含未知数的因式 如例2 时 不能随便先约去这个因式 因为如果约去则是默认这个因式不为零 那么如果此因式可以为零 则方程会失一个根 出现漏根错误 所以应通过移项 提取公因式的方法求解 第7讲 归类示例 类型之三一元二次方程根的判别式 第7讲 归类示例 命题角度 1 判别一元二次方程根的情况 2 求一元二次方程字母系数的取值范围 例3 2012 绵阳 已知关于x的方程x2 m 2 x 2m 1 0 1 求证 方程恒有两个不相等的实数根 2 若此方程的一个根是1 请求出方程的另一个根 并求出以此两根为边长的直角三角形的周长 第7讲 归类示例 1 判别一元二次方程有无实数根 就是计算判别式 b2 4ac的值 看它是否大于0 因此 在计算前应先将方程化为一般式 2 注意二次项系数不为零这个隐含条件 第7讲 归类示例 类型之四一元二次方程的应用 命题角度 1 用一元二次方程解决变化率问题 a 1 m n b 2 用一元二次方程解决商品销售问题 第7讲 归类示例 例4 2012 徐州 为了倡导节能低碳的生活 某公司对集体宿舍用电收费做如下规定 一间宿舍一个月用电量若不超过a千瓦时 则一个月的电费为20元 若超过a千瓦时 则除了交20元外 超过部分每千瓦时要交元 某宿舍3月份用电80千瓦时 交电费35元 4月份用电45千瓦时 交电费20元 1 求a的值 2 若该宿舍5月份交电费为45元 那么该宿舍当月用电量为多少千瓦时 第7讲 归类示例 解析 1 由题意可得出3月份的用电量超过了a度 而4月份的用电量在a度以内 那么可根据3月份的用电情况来求a的值 可根据 不超过a度的缴费额 3月份超过a度部分的缴费额 总的电费 列出方程 进而可求出a的值 然后可根据4月份的用电量大致判断出a的取值范围 由此可判定解出的a的值是否符合题意 2 由 1 得a的值 把45代入即可 第7讲 归类示例 第7讲 回归教材 根的判别式作用大 教材母题江苏科技版九上P91T2k取什么值时 方程x2 kx 4 0有两个相等的实数根 求这时方程的根 解 方程有两个相等的实数根 k 2 4 1 4 0 即k2 16 解得k1 4 k2 4 把k1 4代入x2 kx 4 0 得x2 4x 4 0 解得x1 x2 2 把k2 4代入x2 kx 4 0 得x2 4x 4 0 解得x1 x2 2 第7讲 回归教材 点析 1 要判定某个一元二次方程是否有实数解或有几个实数解时 常用一元二次方程根的判别式去判定 2 见到含有字母的一元二次方程时 在实数范围内首先应有 0 若字母在二次项系数中 则还应考虑二次项系数是否为0 第7讲 回归教材 中考变式 1 2012 广安 已知关于x的一元二次方程 a 1 x2 2x 1 0有两个不相等的实数根 则a的取值范围是 A a 2B a 2C a 2且a 1D a 2 C 解析 4 4 a 1 8 4a 0 得a 2 又a 1 0 a 2且a 1 故选C 第7讲 回归教材 2 2011 孝感 第7讲 回归教材 第8讲 分式方程及其应用 第8讲分式方程及其应用 第8讲 考点聚焦 考点1分式方程 未知数 零 零 第8讲 考点聚焦 考点2分式方程的解法 公分母 考点3分式方程的应用 第8讲 考点聚焦 列分式方程解应用题的步骤跟其他应用题有点不一样的是 要检验两次 既要检验求出来的解是否为原方程的根 又要检验是否符合题意 第8讲 归类示例 类型之一分式方程的概 命题角度 1 分式方程的概念 2 分式方程的增根 例1 2012 攀枝花 1 第8讲 归类示例 类型之二分式方程的解法 命题角度 1 去分母法 2 换元法 3 注意解分式方程必须检验 第8讲 归类示例 例2 2012 苏州 解方程 解分式方程常见的误区 1 忘记验根 2 去分母时漏乘整式的项 3 去分母时 没有注意符号的变化 第8讲 归类示例 类型之三分式方程的应用 第8讲 归类示例 命题角度 1 利用分式方程解决生活实际问题 2 注意分式方程要对方程和实际意义双检验 例3 2012 扬州 为了改善生态环境 防止水土流失 某村计划在荒坡上种480棵树 由于青年志愿者的支援 每日比原计划多种 结果提前4天完成任务 原计划每天种多少棵树 第8讲 归类示例 第8讲 回归教材 行程问题有规律 教材母题江苏科技版八下P53T3某校甲 乙两组同学同时出发去距离学校4km的植物园参观 甲组步行 乙组骑自行车 结果乙组比甲组早到20min 已知骑自行车的速度是步行速度的2倍 求甲 乙两组的速度 第8讲 回归教材 中考变式 2011 徐州 徐州至上海的铁路里程为650km 从徐州乘 G 字头列车A D 字头列车B都可直达上海 已知A车的平均速度为B车的2倍 且行驶的时间比B车少2 5h 1 设B车的平均速度为xkm h 根据题意 可列分式方程 2 求A车的平均速度及行驶时间 第8讲 回归教材 第9讲 一元一次不等式 组 及其应用 第9讲一元一次不等式 组 及其应用 第9讲 考点聚焦 考点1不等式 不等号 解 解集 第9讲 考点聚焦 不变 不变 改变 第9讲 考点聚焦 考点2一元一次不等式 1 考点3一元一次不等式组 第9讲 考点聚焦 第9讲 考点聚焦 考点4一元一次不等式 组 的应用 第9讲 考点聚焦 考点5利用不等式 组 解决日常生活中的实际问题 第9讲 考点聚焦 第9讲 考点聚焦 第9讲 归类示例 类型之一不等式的概念及性质 命题角度 1 不等式 不等式的解和解集等概念 2 不等式的性质 例1 2011 无锡 若a b 则 A a bB a 2bD 2a 2b D 解析 由于a b的取值范围不确定 故可考虑利用特例来说明 A 例如a 0 b 1 a b 故此选项错误 B 例如a 1 b 0 a b 故此选项错误 C 利用不等式性质2 同乘以 2 不等号改变 则有 2a 2b 故此选项错误 由此也说明D选项正确 故选D 1 运用不等式的性质时 应注意不等式的两边同时乘或者除以一个负数 不等式的方向要改变 2 生活中的跷跷板 天平等问题 常借助不等式 组 来求解 注意数与形的有机结合 第9讲 归类示例 类型之二一元一次不等式 命题角度 1 一元一次不等式的概念 2 一元一次不等式的解法 第9讲 归类示例 例2 2012 连云港 图9 2 类型之三一元一次不等式组 第9讲 归类示例 命题角度 1 一元一次不等式组的概念和解集 2 一元一次不等式组的解法 3 求不等式的整数解 例3 2012 淮安 解不等式组 解析 先分别求出每个不等式的解集 再求出这两个不等式解集的公共部分 就是这个不等式组的解集 第9讲 归类示例 解 解不等式x 1 0 得x 1 解不等式3 x 2 5x 得x 3 根据 同大取大 得原不等式组的解集为x 3 类型之四与不等式 组 的解集有关的问题 第9讲 归类示例 命题角度 1 求不等式组的整数解 2 根据解的情况求相关字母的值 例4 B 第9讲 归类示例 已知不等式组的解集求字母 或有关字母代数式 的值 一般先求出已知不等式 组 的解集 再结合给定的解集 得出等量关系或者不等关系 第9讲 归类示例 类型之五一元一次不等式 组 的应用 第9讲 归类示例 命题角度 1 解决商品销售问题 2 解决门票的销售 原料的加工等方面的问题 3 利用不等关系确定取值范围 讨论方案的可行性 4 利用不等关系讨论哪种方案更合算 例5某商店5月1日举行促销优惠活动 当天到该商店购买商品有两种方案 方案一 用168元购买会员卡成为会员后 凭会员卡购买商店内任何商品 一律按商品价格的8折优惠 方案二 若不购买会员卡 则购买商店内任何商品 一律按商品价格的9 5折优惠 已知小敏5月1日前不是该商店的会员 1 若小敏不购买会员卡 所购买商品的价格为120元时 实际应支付多少元 2 请帮小敏算一算 所购买商品的价格在什么范围内时 采用方案一更合算 解 1 120 0 95 114 元 所以实际应支付114元 2 设购买商品的价格为x元 由题意得 0 8x 168 0 95x 解得x 1120 所以当购买商品的价格超过1120元时 采用方案一更合算 第9讲 归类示例 1 解决实际问题时 要注意题中表示不等关系的关键词 如 不少于 不超过 不高于 等 2 所求的结果应符合生活实际 第9讲 归类示例 第9讲 回归教材 分配 中的不等关系 教材母题江苏科技版八下P25T5将23本书分给若干名学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具拆卸搬运合同范本
- 点火系统:点火开关竞争策略分析报告
- 中医护理质量自查报告
- 个人股份协议书
- 个人租房合同简易版
- 厦门运输合同范例
- 卖煤提成合同范例
- 丑小鸭阅读心得体会
- 厂房装修材料合同范本
- 厨房橱柜合同范本
- 行政法学基础讲义
- 中建专项施工升降机安装专项施工方案
- 录用通知书offer录取通知书
- Oracle数据库安全配置基线
- PMC部绩效考核表
- 功率测量模块的软件设计方案与实现
- 中考英语高频单词专项训练题配套答案
- 火龙罐疗法经典课件
- 应用写作(第六版) 课件 第1-4章 应用写作概述-行政事务应用文
- 破伤风的预防及救治措施课件
- GB/T 3884.18-2023铜精矿化学分析方法第18部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化铝、氧化镁、氧化钙含量的测定电感耦合等离子体原子发射光谱法
评论
0/150
提交评论