




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档安徽机电职业技术学院毕业设计说明书基于PLC与组态王的温度控制系统设计系 (部) 电 气 工 程 系 专 业 机 电 一 体 化 班 级 姓 名 学 号 指导教师 白金老师 2010 2011 学年第 一 学期摘 要可编程控制器是一种应用很广泛的自动控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制能力强、操作灵活方便、可靠性高、适宜长期连续工作的特点,非常适合温度控制的要求。 在工业领域,随着自动化程度的迅速提高,用户对控制系统的过程监控要求越来越高,人机界面的出现正好满足了用户这一需求。人机界面可以对控制系统进行全面监控,包括过程监测、报警提示、数据记录等功能,从而使控制系统变得操作人性化、过程可视化,在自动控制领域的作用日益显著。本文主要介绍了基于西门子公司S7-200系列的可编程控制器和亚控公司的组态软件组态王的炉温控制系统的设计方案。编程时调用了编程软件STEP 7 -Micro WIN中自带的PID控制模块,使得程序更为简洁,运行速度更为理想。利用组态软件组态王设计人机界面,实现控制系统的实时监控、数据的实时采样与处理。实验证明,此系统具有快、准、稳等优点,在工业温度控制领域能够广泛应用。关键词温度控制;可编程控制器;人机界面;组态王目 录摘要2引言5第一章温度控制系统的介绍 61.1项目的背景和意义61.2温度控制系统的现状 61.3温度控制系统的内容7第二章 PLC控制系统硬件设计 82.1硬件系统组成及工作原理82.1.1硬件系统组成82.1.2硬件系统工作原理82.2 S7-200 CPU的选择82.3 EM231模拟量输入模块82.4 热电式传感器102.5 I/O点分配及电气连接图102.6 控制系统数学模型的建立11第三章 PLC控制系统软件设计 133.1 PID控制及参数整定133.2 程序的设计143.2.1 设计思路143.2.2 控制程序流程图153.2.3 梯形图程序163.2.4 PID指令向导的运用193.3 人机界面(HMI)设计20第四章 系统运行结果及分析 214.1 系统运行214.2 运行结果分析214.2.1 温度趋势曲线分析214.2.2 报警信息分析24结束语25谢辞26参考文献27引 言随着社会经济的迅速发展,人民对温度的控制系统可靠性的要求不断提高。把先进的自动化技术、控制技术、通讯及网络技术等应用到温度控制领域,成为对温度系统的新要求。温度控制系统集自控技术、电气技术、现代控制技术于一体。采用该系统进行温度控制可以提高供温度系统的稳定性和可靠性,方便地实现温度系统的集中管理与监控;同时系统具有良好的节能效果,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。第一章温度控制系统的介绍1.1项目的背景和意义温度控制在电子、冶金、机械等工业领域应用非常广泛。由于其具有工况复杂、参数多变、运行惯性大、控制滞后等特点,它对控制调节器要求极高。目前,仍有相当部分工业企业在用窑、炉等烘干生产线,存在着控制精度不高、炉内温度均匀性差等问题,达不到工艺要求,造成装备运行成本费用高,产出品品质低下,严重影响企业经济效益,急需技术改造。近年来,国内外对温度控制器的研究进行了广泛、深入的研究,特别是随着计算机技术的发展,温度控制器的研究取得了巨大的发展,形成了一批商品化的温度调节器,如:职能化PID、模糊控制、自适应控制等,其性能、控制效果好,可广泛应用于温度控制系统及企业相关设备的技术改造服务。在工业生产过程中,温度是最常见的过程参数之一。在冶金、化工、电力、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。由于其具有工况复杂、参数多变、运行惯性大、控制滞后等特点,它对控制调节器要求极高。在工程实际中,应用最为广泛的调节器控制规律为PID控制。可编程控制器(PLC)是一种应用非常广泛的自动控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制能力强、操作灵活方便、可靠性高、适宜长期连续工作的特点,非常适合温度控制的要求。基于PLC 的温度控制系统以其可靠性高、抗干扰能力强、编程简单、功能强大、能耗低等优点深受许多用户的青睐,在工业温度控制场合得到了广泛的应用。同时,人机界面的出现可以使用户对控制系统进行全面监控,包括参数监测、信息处理、在线优化、报警提示、数据记录等功能,从而使控制系统变得简单易懂、操作人性化。1.2 温度控系统的现状温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比仍然有着较大的差距。目前,我国在这方面总体水平处于20世纪80年代中后期水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后、复杂、时变温度系统控制。而适应于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟。形成商品化并在仪表控制参数的自整定方面,国外已有较多的成熟产品,但由于国外技术保密及我国开发工作的滞后,还没开发出性能可靠的自整定软件。控制参数大多靠人工经验及我国现场调试来确定。这些差距,是我们必须努力克服的。随着我国加入WTO,我国政府及企业对此非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,并通过合资、技术合作等方式,组建了一批合资、合作及独资企业,使我国温度仪表等工业得到迅速的发展1。随着科学技术的不断发展,人们对温度控制系统的要求愈来愈高,因此,高精度、智能化、人性化的温度控制系统是国内外必然发展趋势。1.3温度控系统的内容 可编程控制器(PLC)是集计算机技术、自动控制技术和通信技术为一体的新型自动控制装置。其性能优越,已被广泛应用于工业控制的各个领域,并已成为工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)之一。PLC的应用已成为一个世界潮流,在不久的将来PLC技术在我国将得到更全面的推广和应用。本论文研究的是PLC技术在温度监控系统上的应用。从整体上分析和研究了控制系统的硬件配置、电路图的设计、程序设计,控制对象数学模型的建立、控制算法的选择和参数的整定,人机界面的设计等。本论文通过德国西门子公司的S7-200系列PLC控制器,温度传感器将检测到的实际炉温转化为电压信号,经过模拟量输入模块转换成数字量信号并送到PLC中进行PID调节,PID控制器输出量转化成占空比,通过固态继电器控制炉子加热的通断来实现对炉子温度的控制。同时利用亚控公司的组态软件“组态王”设计一个人机界面(HMI),通过串行口与可编程控制器通信,对控制系统进行全面监控,从而使用户操作更方便。总体上包括的技术路线:硬件设计,软件编程,参数整定等。第二章 PLC控制系统硬件设计2.1硬件系统组成及工作原理2.1.1硬件系统组成系统采用S7-200CPU226型PLC、EM231模拟量扩展模块、热电式传感器、固态继电器、烤炉及其他控制设备组成。系统的框架图如图1所示。计算机PLCEM231模块固态继电器热电偶烤炉 图1 系统框架图2.1.2 工作原理系统选用PLC CPU226为控制器, K型热电偶将检测到的实际炉温转化为电压信号,经过EM231模拟量输入模块转换成数字量信号并送到PLC中进行PID调节,PID控制器输出量转化成占空比,通过固态继电器控制炉子加热的通断来实现对炉子温度的控制。PLC和HMI相连接,实现了系统的实时监控。2.2 S7-200 CPU的选择S7-200系列的PLC有CPU221、CPU222、CPU224、CPU224XP、CPU226等类型。此系统选用S7-200 CPU226,CPU226集成了24点输入/16点输出,共有40个数字量I/O。可连接7个扩展模块,最大扩展至248点数字量或35点模拟量I/O。还有13KB程序和数据存储空间空间,6个独立的30KHz高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器。配有2个RS485通讯口,具有PPI,MPI和自由方式通讯能力,波特率最高为38.4 kbit/s,可用于较高要求的中小型控制系统11。本温度控制系统由于输入/输出点数不多,本可以使用CPU224以下的类型,不过为了能调用编程软件STEP 7 里的PID模块,只能采用CPU226及以上机种。2.3 EM231模拟量输入模块本温度控制系统中,传感器将检测到的温度转换成041mv的电压信号,系统需要配置模拟量输入模块把电压信号转换成数字信号再送入PLC中进行处理。在这里,我们选用了西门子EM231 4TC模拟量输入模块。EM231热电偶模块提供一个方便的,隔离的接口,用于七种热电偶类型:J、K、E、N、S、T和R型,它也允许连接微小的模拟量信号(80mV范围),所有连到模块上的热电偶必须是相同类型,且最好使用带屏蔽的热电偶传感器。EM231模块需要用户通过DIP开关进行组态: SW1SW3用于选择热电偶类型,SW4没有使用,SW5用于选择断线检测方向,SW6用于选择是否进行断线检测,SW7用于选择测量单位,SW8用于选择是否进行冷端补偿。本系统用的是K型热电偶,所以DIP开关SW1SW8组态为00100000;EM231具体技术指标见表1。表1 EM231技术指标型号EM231模拟量输入模块总体特性 外形尺寸:71.2mm80mm62mm 功耗:3W输入特性本机输入:4路模拟量输入电源电压:标准DC 24V/4mA输入类型:010V,05V,5V,2.5V,020mA分辨率:12 Bit转换速度:250S隔离:有耗电从CPU的DC 5V (I/O总线)耗电10mADIP开关SW1 0, SW2 0, SW3 1(以K型热电偶为例)表2所示为如何使用DIP开关设置EM231模块,开关1、2和3可选择模拟量输入范围。所有的输入设置成相同的模拟量输入范围。表中,ON为接通,OFF为断开。表2 EM231选择模拟量输入范围的开关表单极性满量程输入分辨率SW1SW2SW3ONOFFON0到10V2.5mVONOFF0到5V1.25mV0到20mA5uA双极性满量程输入分辨率SW1SW2SW3OFFOFFON5V2.5mVONOFF2.5V1.25mVEM231校准和配置位置图如图2所示。图2 DIP配置EM2312.4 热电式传感器 热电式传感器是一种将温度变化转化为电量变化的装置。在各种热电式传感器中,以将温度量转换为电势和电阻的方法最为普遍。其中最常用于测量温度的是热电偶和热电阻,热电偶是将温度变化转换为电势变化,而热电阻是将温度变化转换为电阻的变化。这两种热电式传感器目前在工业生产中已得到广泛应用。该系统中需要用传感器将温度转换成电压,且炉子的温度最高达几百度,所以我们选择了热电偶作为传感器。热电偶是工业上最常用的温度检测元件之一。国际标准热电偶有S、B、E、K、R、J、T七种类型,在本系统中,我们选用了K型热电偶(分度表如表3所示),其测温范围大约是01000。系统里的烤炉最高温度不过几百度,加上一定的裕度就足够了,另外其成本也不算高2。表3 K型热电偶分度表2.5 I/O点分配及电气连接图()该温度控制系统中I/O点分配表和整个硬件连接图如表4和图4所示。 表4 I/O点分配表输入触点功能说明输出触点功能说明IO.1启动按钮Q0.0运行指示灯(绿)I0.2停止按钮Q0.1停止指示灯(红)Q0.3固态继电器2.6 控制系统数学模型的建立本温度控制系统中,传感器(电热偶)将检测到的温度信号转换成电压信号经过温度模块后,与设定温度值进行比较,得到偏差,此偏差送入PLC控制器按PID算法进行修正,返回对应工况下的固态继电器导通时间,调节电热丝的有效加热功率,从而实现对炉子的温度控制。控制系统结构图如图3所示,方框图如图5所示。 PLC控制器固态继电器烤炉温度模块热电偶图3图4Gc(s)Go(s) R(s) + E(s) U(s) Y(s) 图5 控制系统方框图图5中,R(s)为设定温度的拉氏变换式;E(s)为偏差的拉氏变换式; Gc(s)为控制器的传递函数;Go(s)为广义对象,即控制阀、对象控制通道、测量变送装置三个环节的合并;该温度控制系统是具有时滞的一阶闭环系统,传递函数为 Gs=K0T0s+1e-s (1-1)式1-1中,为对象放大系数;为对象时间常数;为对象时滞。 K0=yu (1-2) 由阶跃响应法求得, =0.5;=2.5分钟;=1.2分钟。第三章 PLC控制系统软件设计3.1 PID控制及参数整定比例、积分、微分三种控制方式各有独特的作用。比例控制是一种最基本的控制规律,具有反应速度快,控制及时,但控制结果有余差等特点。积分控制可以消除余差,但是工业上很少单独使用积分控制的,因为与比例控制相比,除非积分速度无穷大,否则积分控制就不可能想比例控制那样及时的对偏差加以响应,所以控制器的输出变化总是滞后与偏差的变化,从而难以对干扰进行及时且有效的控制。微分作用是对偏差的变化速度加以响应的,因此,只要偏差一有变化,控制器就能根据变化速度的大小,适当改变其输出信号,从而可以及时克服干扰的影响,抑制偏差的增长,提高系统的稳定性。但是理想微分控制器的控制结果也不能消除余差,而且控制效果要比纯比例控制器更差。将三种方式加以组合在一起,就是比例积分微分(PID)控制,其数学表达式为 ut=Kpet+1TI0tetdt+TDdetdt (1-3)式1-3中:为比例系数,为积分时间常数,为微分时间常数。根据以上的分析,本温度控制系统适于采用PID控制。完成了上述内容后,该温度控制系统就已经确定了。在系统投运之前,还需要进行控制器的参数整定。控制器参数整定方法很多。归纳起来可分为两大类,即理论计算整定法和工程整定法。理论计算整定法是在已知被控对象的数学模型的基础上,根据选取的质量指标,通过理论计算(微分方程、根轨迹、频率法等),来求得最佳的整定参数。这类方法计算繁杂,工作量又大,而且由于用解析法或实验测定法求得的对象数学模型都只能近似的反映过程的动态特性,整定结果的精度是不高的,因而未在工程上受到广泛推广。对于工程整定法,工程技术人员无需知道对象的数学模型,无需具备理论计算所需的理论知识,就可以在控制系统中直接进行整定,因而简单、实用,在实际工程中被广泛使用。常用的工程整定法有经验整定法、临界比例度法、衰减曲线法、反应曲线法、自整定法等。在这里,我们采用经验整定法来整定控制器的参数值。下面介绍下方法步骤。经验整定法实质上是一种经验凑试法,是工程技术人员在长期生产实践中总结出来的。它不需要进行事先的计算和实验,而是根据运行经验,先确定一组控制器参数,并将系统投入运行,通过观察人为加入干扰(改变设定值)后的过渡过程曲线,根据各种控制作用对过渡过程的不同影响来改变相应的控制参数值,进行反复凑试,直到获得满意的控制质量为止。由于比例作用是最基本的控制作用,经验整定法主要通过调整比例度的大小来满足质量指标。整定途径有以下两条: 1)先用单纯的比例(P)作用,即寻找合适的比例度,将人为加入干扰后的过渡过程调整为4:1的衰减振荡过程。然后再加入积分( I )作用,一般先取积分时间T1为衰减振荡周期的一半左右。由于积分作用将使振荡加剧,在加入的积分作用之前,要先衰减比例作用,通常把比例度增大10%-20%。调整积分时间的大小,直到出现4:1的衰减振荡。需要时,最后加入微分(D)作用,即从零开始,逐渐加大微分时间Td,由于微分作用能抑制振荡,在加入微分作用之前,可以把积分时间也缩短一些。通过微分时间的凑试,使过渡时间最短,超调量最小。2)先根据表选取积分时间Ti和Td,通常取Td=(1/3-1/4)Ti,然后对比例度进行反复凑试,直至得到满意的结果。如果开始时Ti和Td设置的不合适,则有可能得不到要求的理想曲线。这时应适当调整Ti和Td,再重复凑试,使曲线最终符合控制要求3。 表5 控制器参数经验数据控制变量规律的选择比例度(%)积分时间Ti(分钟)微分时间Td(分钟)温度对象容量滞后较大,即参数受干扰后变化迟缓,应小,Ti要长,一般需要微分20-603-100.5-3通过经验整定法的整定,PID控制器整定参数值为: 比例系数=120,积分时间=3分钟,微分时间=1分钟。3.2 程序的设计3.2.1 设计思路PLC运行时,通过特殊继电器SM0.0产生初始化脉冲进行初始化,将温度设定值,PID参数值等,存入有关的数据寄存器,使定时器复位;按启动按钮,系统开始温度采样,采样周期为10秒;K型热电偶传感器把所测量的温度进行标准量转换(0-41毫伏);模拟量输入通道AIW0通过读入0-41毫伏的模拟电压量送入PLC;经过程序计算后得出实际测量的温度T,将T和温度设定值比较,根据偏差计算调整量,发出调节命令。3.2.2 控制程序流程图启动绿灯亮,系统运行调用PID模块PID输出转换成占空比定时器控制加热时间温度当前值和设定值等显示开始图 6 程序流程 3.2.3梯形图程序 启动,绿灯亮停止,红灯亮 上述程序中,I0.1和I0.2分别是启动和停止按钮,Q0.0和Q0.1分别是系统运行指示灯(绿灯)和系统停止指示灯(红灯),M0.0和M0.1是中间继电器。 调用PID模块这里用SM0.0直接调用了编程软件自带的PID子程序,即就是用PID指令向导编程。上面的指令中,PV_I为反馈值,也就是热电偶将检测到的当前温度值送入温度模块后输出的模拟电压值AIW0;Setpoint_R为设定值。每个PID回路都有两个输入变量,给定值SP和过程变量PV。执行PID指令前必须把它们转换成标准的浮点型实数。即先把整数值转换成浮点型实数值,再把实数值进行归一化处理,使其为0.0-1.0之间的实数。归一化的公式为R1=(R/S+ M) (1-4)式中,R1为标准化的实数值;R为未标准化的实数值;M为偏置,单极性为0.0,双极性为0.5;S为值域大小,为最大允许值减去最小允许值,单极性为32000,双极性为64000。 在本项目中,R=100,即就是设定温度100度;S=32000,M=0.0,所以按照归一化公式R1=100/32000+0.0=0.03125,即Setpoint_R为0.03125.该网络的程序功能是把PID回路输出转换成占空比。因PID回路的输出PID0_Output为0.0-1.0之间的实数值,又因我们设置了采样时间为10秒,所以第一个指令MUL_R中INT2为100.0。ROUND是将实数转换成双整数,DI_I是将双整数转换成整数。VW2和VW4分别是采样周期内的加热时间和非加热时间。 上述程序用了两个100ms的定时器T241和T242来控制加热时间,其中Q0.3为连接固态继电器的输出端子。3.2.4 PID指令向导的运用该网络的程序是为了在电脑上通过STEP7-Micro/WIN编程软件显示当前温度和设定温度值而写的,其实也就是归一化的逆过程。若无该网络,则显示的温度值都是归一化的实数值,不便于记录和观察。STEP7-Micro/WIN提供了PID Wizard(PID指令向导),可以帮助用户方便地生成一个闭环控制过程的PID算法。此向导可以完成绝大多数PID运算的自动编程,用户只需在主程序中调用PID向导生成的子程序,就可以完成PID控制任务。PID向导既可以生成模拟量输出PID控制算法,也支持开关量输出;既支持连续自动调节,也支持手动参与控制4。本项目程序中就正好运STEP7-Micro/WIN软件自带的PID指令向导。从而使得程序简单易懂,同时也达到了控制要求。3.3 人机界面(HMI)设计 HMI监控系统由监控主画面及相应的功能子画面组成,HMI画面设计对于HMI来说是非常关键的。HMI画面是用组态软件来做的,常见的组态软件有西门子公司的Wincc、罗克韦尔公司的RsView及国产的组态王、力控等。在本温度控制系统设计中,我们选择了组态王来完成监控画面的设计。组态王和其他组态软件相比最大的优势是它操作方便,提供了资源管理器式的操作主界面,并且提供了以汉字作为关键字的脚本语言支持,对于新手来说很容易上手。 在这里我们制作了监控主界面、实时趋势曲线、历史趋势曲线、报警窗口等画面。第四章 系统的运行结果及分析完成了PLC程序设计和人机界面设计之后,进入系统运行测试阶段。首先在STEP7-Micro/Win编程软件中将设计好的程序下载到PLC中,然后打开组态王,切换到运行模式。4.1系统运行打开主界面,点击“开始”按钮,则开关变绿色,系统开始运行,目前温度值开始有数据显示,温度仪表上也显示了当前温度值。图6-1是当前温度为100.1度时的主界面。其中设定温度为100度。图6-1 系统运行主界面打开主界面,点击“设定画面”按钮,则切换到设定画面。增益Kc、积分时间Ti、微分时间Td、采样时间、设定温度这几个变量的值也显示在画面上。本项目编写程序时用了PID指令向导,Kc设置了120,Ti设置了3分钟,Td设置了1分钟,则设定画面上也是现实同样的数据。如图6-2所示。4.2运行结果分析4.2.1温度趋势曲线分析1)打开主界面,点击“实时趋势曲线”按钮,则切换到实时趋势曲线画面。画面中红色曲线表示设定温度,蓝色曲线表示当前温度。由实时趋势曲线图可知,系统运行后当前温度快速上升到95度,然后稍微缓慢上升到105度左右,最后下降到100度左右稳定下来。其中,当前温度值最大为105.5度,稳定后在98度到100.3度之间,与设定温度极为接近。可见,该温控系统超调量很小。图6-3是当前温度在95度到100度之间缓慢上升的阶段。图6-2 系统运行设定画面2) 打开主界面,点击“历史趋势曲线”按钮,则切换到历史趋势曲线画面。如图6-4所示,画面中红色曲线表示设定温度,蓝色曲线表示当前温度。其中Y轴不是实际的温度值而是百分比。从曲线可以看出,开始时蓝色曲线快速上升,最后超出红色曲线一点,和它平行,最后差不多重合。由图6-4可知,该温度控制系统从开始运行到趋于稳定需要14分钟 20秒,系统反应快速,控制精确度高,抗干扰能力强。图6-3 系统运行实时趋势曲线 图6-4 系统运行历史趋势曲线4.2.2报警信息分析打开主界面,点击“报警窗口”按钮,则切换到报警窗口。如图6-5所示,当温度低于60度时,报警类型显示当前温度太低。当温度低于90时,显示当前温度偏低,当温度超过105时,显示当前温度偏高。经过测试,当设定温度为100度时,当前温度值最大为105.5度。由图6-5可知,当前温度为105.1度时,报警类型显示当前温度偏高;当前温度为60度时,报警类型显示当前温度偏低;当前温度为30.1度时,报警类型显示当前温度太低。可见,报警信息显示正确,从而为操作人员及时了解系统运行情况提供了很大的帮助。图6-5 系统运行报警窗口五结束语PLC(可编程控制器)以其可靠性高、抗干扰能力强、编程简单、功能强大、性价比高、体积小、能耗低等显著特点广泛应用于现
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泉州华光职业学院《翻译理论与实践》2023-2024学年第二学期期末试卷
- 石家庄工商职业学院《法律英语》2023-2024学年第二学期期末试卷
- 山西财贸职业技术学院《电脑音乐制作》2023-2024学年第二学期期末试卷
- 重庆电子工程职业学院《小学数学教学与研究(一)》2023-2024学年第二学期期末试卷
- 太原师范学院《儿童画创作》2023-2024学年第二学期期末试卷
- 房顶花园设计施工方案
- 2025至2031年中国多面液压抽芯模具行业投资前景及策略咨询研究报告
- 2025至2031年中国可编址防宠物被动红外探测器行业投资前景及策略咨询研究报告
- 2025至2031年中国全瓷桥梁砖行业投资前景及策略咨询研究报告
- 2025至2031年中国PAR38大功率LED射灯行业投资前景及策略咨询研究报告
- 超声支气管镜相关知识
- 新视野大学英语(第四版)读写教程4(思政智慧版)课件 B4 Unit 4 Man and nature Section A
- 2025年河南省中招理化生实验操作考试ABCD考场评分表
- 2025年信阳职业技术学院单招职业适应性测试题库带答案
- 毕业设计(论文)-辣椒采摘装置结构设计
- 2024年宁波市消防救援支队社会招录政府专职消防员考试真题
- (高清版)DB35∕T 2230-2024 山岭公路隧道绿色施工信息化监测技术规程
- 新疆地区历年中考语文文言文阅读试题42篇(含答案与翻译)(截至2024年)
- 图解-“健康中国2030”规划纲要-医学课件
- 第十八届“地球小博士”全国地理知识科普竞赛题库(附答案)
- 安全在心中幸福伴我行
评论
0/150
提交评论