




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
利用函数模型求最值ABCDEF例1 、如图(1),平行四边形中,E为BC上一动点(不与B重合),作于,设的面积为当运动到何处时,有最大值,最大值为多少?(1)三、利用几何模型求最值例1、几何模型:条件:如下左图,、是直线同旁的两个定点问题:在直线上确定一点,使的值最小方法:作点关于直线的对称点,连结交于点,则的值最小(不必证明)模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点连结,由正方形对称性可知,与关于直线对称连结交于,则的最小值是_;(2)如图2,的半径为2,点在上,是上一动点,求的最小值;ABPlOABPRQ图3OABC图2ABECPD图1(第1题)P(3)如图3,是内一点,分别是上的动点,求周长的最小值例2 如图(1)所示,在一笔直的公路的同一旁有两个新开发区,已知千米,直线与公路的夹角新开发区B到公路的距离千米。(1)求新开发区A到公路的距离;(2)现从上某点处向新开发区修两条公路,使点到新开发区的距离ABCNOM之和最短,请用尺规作图在图中找出点的位置(不用证明,不写作法,保留作图痕迹),并求出此时的值。ACBPQ例3 如图,(1),在中,为边上一定点,(不与点B,C重合),为边上一动点,设的长为,请写出最小值,并说明理由。例4 如图(1),抛物线和轴的交点为为的中点,若有一动点,自点处出发,沿直线运动到轴上的某点(设为点),再沿直线运动到该抛物线对称轴上的某点(设为点),最后又沿直线运动到点,求使点运动的总路程最短的点,点的坐标,并求出这个最短路程的长。AFEM(2)归于“三角形两边之差小于第三边”例5、如图(1),直线与轴交于点C,与轴交于点B,点A为轴正半轴上的一点,A经过点B和点,直线BC交A于点D。(1)求点D的坐标;(2)过,C,D三点作抛物线,在抛物线的对称轴上是否存在一点,使线段与之差的值最大?若存在,请求出这个最大值和点P的坐标。若不存在,请说明理由。ADCB四、学生练习题1恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世著名的恩施大峡谷和世界级自然保护区星斗山位于笔直的沪渝高速公路同侧,、到直线的距离分别为和,要在沪渝高速公路旁修建一服务区,向、两景区运送游客小民设计了两种方案,图11(1)是方案一的示意图(与直线垂直,垂足为),到、的距离之和,图11(2)是方案二的示意图(点关于直线的对称点是,连接交直线于点),到、的距离之和(1)求、,并比较它们的大小;(2)请你说明的值为最小;BAPX图11(1)YXBAQPO图11(3)BAPX图11(2)(3)拟建的恩施到张家界高速公路与沪渝高速公路垂直,建立如图11(3)所示的直角坐标系,到直线的距离为,请你在旁和旁各修建一服务区、,使、组成的四边形的周长最小并求出这个最小值ABC2、已知,如图,抛物线与轴交于A,B两点,交轴于点在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由。3、抛物线交轴于A,B两点,交轴于点已知抛物线的对称轴为。(1)求抛物线的解析式;ABC(2)在抛物线的对称轴上是否存在一点,使点到B,C两点的距离之差最大?若存在,求出点的坐标;若不存在,请说明理由。4.如图,已知点A(-4,8)和点B(2,n)在抛物线上(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线,记平移后点A的对应点为A,点B的对应点为B,点C(-2,0)和点D(-4,0)是x轴上的两个定点当抛物线向左平移到某个位置时,AC+CB 最短,求此时抛物线的函数解析式;当抛物线向左或向右平移
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《矿井通风与安全》课件
- 荣昌别墅地毯施工方案
- 2025至2031年中国单推氮窑行业投资前景及策略咨询研究报告
- 2025年抵押担保合同范本
- 2025至2030年中国防松片数据监测研究报告
- 2025至2030年中国钢材材质机械性能万能试验机数据监测研究报告
- 慈溪机房地坪施工方案
- 2025年合同违约与解除合同的经济补偿规定
- 底层石膏工程施工方案
- 智慧商场新零售营销解决方案
- 房车露营地各岗位职责
- 2025年度农村土地流转合作开发合同范本
- 2025年湖南常德烟机公司招聘笔试参考题库含答案解析
- 全国飞盘运动竞赛规则(试行)
- 循环呼吸系统模拟题(含参考答案)
- 2025年日历(日程安排-可直接打印)
- 关于口腔医学的专科生毕业论文
- 耳穴贴压治疗腰痛
- 2025年涉密人员保密知识学习考试题及答案
- 2024年化学检验员(中级工)技能鉴定考试题库(附答案)
- 2024-2030年中国个人形象包装及设计服务行业竞争状况及投资战略研究报告
评论
0/150
提交评论