




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1章导数及应用1 3 1函数的单调性与导数 函数的单调性与导数 内容 利用导数研究函数的单调性 应用 利用导函数判断原函数大致图象 利用导数求函数的单调区间 从导数的角度解释增减及增减快慢的情况 有关含参数的函数单调性问题 本课主要学习利用导数研究函数的单调性 利用动画剪纸之对称性引入新课 接着复习了函数单调性的相关问题 通过探究跳水运动中高度h随时间t变化的函数的图象 讨论运动员的速度v随时间t变化的函数关系 再结合具体函数 探究函数在某个点处的导数值与函数在该点处的单调性问题 结合具体例子探索函数的单调性与导数的关系 利用导数判断函数的单调性或求函数的单调区间 从导数的角度解释增减及增减快慢的情况及含参数的函数单调性问题 重点是利用导数研究函数的单调性 会求函数的单调区间 采用例题与变式练习相结合的方法 通过4个例题探讨利用导数研究函数的单调性问题 随后是5道课堂检测 通过设置难易不同的必做和选做试题 对不同的学生进行因材施教 动画剪纸之对称性 函数是客观描述世界变化规律的重要数学模型 研究函数时 了解函数的增与减 增减的快与慢以及函数的最大值或最小值等性质是非常重要的 通过研究函数的这些性质 我们可以对数量的变化规律有一个基本的了解 函数的单调性与函数的导数一样都是反映函数变化情况的 那么函数的单调性与函数的导数是否有着某种内在的联系呢 创设情景 复习引入 一般地 对于给定区间d上的函数f x 若对于属于区间d的任意两个自变量的值x1 x2 当x1 x2时 有 问题1 函数单调性的定义怎样描述的 1 若f x1 f x2 那么f x 在这个区间上是增函数 2 若f x1 f x2 那么f x 在这个区间上是减函数 2 作差f x1 f x2 作商 2 用定义证明函数的单调性的一般步骤 1 任取x1 x2 d 且x1 x2 4 定号 判断差f x1 f x2 的正负 与 比较 3 变形 因式分解 配方 通分 提取公因式 5 结论 3 研究函数的单调区间你有哪些方法 1 观察法 观察图象的变化趋势 2 定义法 4 讨论函数y x2 4x 3的单调性 定义法 单增区间 单减区间 图象法 5 确定函数f x xlnx在哪个区间内是增函数 哪个区间内是减函数 提出问题 1 你能画出函数的图象吗 2 能用单调性的定义吗 试一试 提问一个学生 解决了吗 到哪一步解决不了 产生认知冲突 发现问题 定义是解决单调性最根本的工具 但有时很麻烦 甚至解决不了 尤其是在不知道函数的图象的时候 如该例 这就需要我们寻求一个新的方法来解决 引导 随着时间的变化 运动员离水面的高度的变化有什么趋势 是逐渐增大还是逐步减小 如图 1 它表示跳水运动中高度h随时间t变化的函数h t 4 9t2 6 5t 10的图象 图 2 表示高台跳水运动员的速度v随时间t变化的函数的图象 运动员从起跳到最高点 以及从最高点到入水这两段时间的运动状态有什么区别 通过观察图象 我们可以发现 1 运动员从起点到最高点 离水面的高度h随时间t的增加而增加 即h t 是增函数 相应地 2 从最高点到入水 运动员离水面的高度h随时间t的增加而减少 即h t 是减函数 相应地 函数的单调性可简单的认为是 说明函数的变化率可以反映函数的单调性 即函数的导数与函数的单调性有着密切的联系 上述情况是否具有一般性呢 导数的几何意义是函数在该点处的切线的斜率 函数图象上每个点处的切线的斜率都是变化的 那么函数的单调性与导数有什么关系呢 观察下面函数的图象 探讨函数的单调性与其导数正负的关系 2 再观察函数y x2 4x 3的图象 该函数在区间 2 上单减 切线斜率小于0 即其导数为负 而当x 2时其切线斜率为0 即导数为0 函数在该点单调性发生改变 在区间 2 上单增 切线斜率大于0 即其导数为正 如果 那么函数在这个区间内单调递增 如果 那么函数在这个区间内单调递减 如果在某个区间内恒有f x 0 则f x 为常数函数 结论 在某个区间 a b 内 函数在某个点处的导数值与函数在该点处的单调性的关系是 一般地 设函数y f x 在某个区间 a b 内可导 则函数在该区间 如果在某个区间内恒有f x 0 则f x 为常数函数 如果f x 0 则f x 在这个区间为增函数 则f x 在这个区间为减函数 如果f x 0 函数的单调性与导数的关系 若f x 在区间 a b 上是增函数 则转化为在 a b 上恒成立 若f x 在区间 a b 上是减函数 则转化为在 a b 上恒成立 例1 已知导函数的下列信息 试画出函数f x 图象的大致形状 利用导函数判断原函数大致图象 解 大体图象为 已知导函数的下列信息 试画出函数f x 图象的大致形状 利用导数求函数的单调区间 例2 判断下列函数的单调性 并求出单调区间 根据导数确定函数的单调性步骤 1 确定函数f x 的定义域 2 求出函数的导数f x 3 解不等式f x 0 得函数单增区间 解不等式f x 0 得函数单减区间 利用导数判断函数单调性及求单调区间应注意的问题 1 在利用导数讨论函数的单调区间时 首先要确定函数的定义域 解决问题的过程中 只能在定义域内 通过讨论导数的符号 来判断函数的单调区间 2 在对函数划分单调区间时 除了必须确定使导数等于零的点外 还有注意在定义域内不连续点和不可导点 3 如果一个函数具有相同单调性的单调区间不止一个 这些单调区间中间不能用 连接 而只能用 逗号 或 和 字隔开 例3如图 水以常速 即单位时间内注入水的体积相同 注入下面四种底面积相同的容器中 请分别找出与各容器对应的水的高度h与时间t的函数关系图象 a b c d h t o h t o h t o h t o 从导数的角度解释增减及增减快慢的情况 解 1 b 2 a 3 d 4 c 一般地 如果一个函数在某一范围内导数的绝对值较大 那么函数在这个范围内变化得快 这时 函数的图象就比较 陡峭 向上或向下 反之 函数的图象就 平缓 一些 如图 函数在或内的图象 陡峭 在或内的图象平缓 有关含参数的函数单调性问题 1 函数的单调性与导数的关系 如何从导数的角度解释增减及增减快慢的情况 数学知识 2 求解函数y f x 单调区间的步骤 确定函数y f x 的定义域 养成研究函数的性质从定义域出发的习惯 求导数f x 得结论 f x 且在定义域内的为增区间 f x 0且在定义域内的为减区间 数学思想 数形结合和转化思想 3 由函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校如何有效提升食品安全管理与实施路径
- 小麦仓储及相关配套设施发展前景分析
- 推动人工智能赋能消费升级行动方案
- 2025年超细石英玻璃纤维丝项目合作计划书
- 2025年超细粉碎设备(气流磨)项目合作计划书
- 城区排水防涝能力提升方案研究
- 提升农业职业经理人考试通过率方法试题及答案
- 实现目标福建事业单位考试试题及答案
- 农艺师考试复习方案2024年试题及答案
- 职业经理人考试发展方向试题及答案
- 新生儿吸入综合征护理查房
- 屋面炮楼连梁平台架体搭设施工方案
- 2023北京四中初二(下)期中数学试卷含答案
- 100个真实民间故事文案
- 四年级下册劳动教育全册教学课件
- 幼儿园优质公开课:中班数学活动《营救汪汪队》超清有声动态课件
- 加油站安全生产投入台账
- 文件签收单范本
- 人教版七年级数学下册 (实际问题与二元一次方程组)二元一次方程组课件(第2课时)
- 对联知识及练习题有答案
- 二年级劳动课-摘菜与洗菜
评论
0/150
提交评论