综述报告——刻蚀简介.doc_第1页
综述报告——刻蚀简介.doc_第2页
综述报告——刻蚀简介.doc_第3页
综述报告——刻蚀简介.doc_第4页
综述报告——刻蚀简介.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微加工技术刻蚀简介 自从半导体诞生以来,很大程度上改变了人类的生产和生活。半导体除了在计算机领域应用之外,还广泛地应用于通信、网络、自动遥控及国防科技领域。本文主要介绍半导体制造工艺中的刻蚀工艺。随着半导体制造大规模集成电路技术的发展,图形加工线条越来越细,硅片尺寸越来越大,对刻蚀工艺的要求也越来高。因此,学习了解刻蚀工艺十分必要。本文将主要从刻蚀简介、刻蚀参数及现象、干法刻蚀和湿法刻蚀四个方面进行论述。1、刻蚀简介1.1 刻蚀定义及目的 刻蚀就是用化学的、物理的或同时使用化学和物理的方法,有选择地把没有被抗蚀剂掩蔽的那一部分薄膜层除去,从而在薄膜上得到和抗蚀剂膜上完全一致的图形。刻蚀的基本目的,是在涂光刻胶(或有掩膜)的硅片上正确的复制出掩膜图形1。刻蚀,通常是在光刻工艺之后进行。通过刻蚀,在光刻工艺之后,将想要的图形留在硅片上。从这一角度而言,刻蚀可以被称之为最终的和最主要的图形转移工艺步骤。在通常的刻蚀过程中,有图形的光刻胶层或掩膜层)将不受到腐蚀源显著的侵蚀或刻蚀,可作为掩蔽膜,保护硅片上的部分特殊区域,而未被光刻胶保护的区域,则被选择性的刻蚀掉。其工艺流程示意图如下。1.2 刻蚀的分类 从工艺上分类的话,在半导体制造中有两种基本的刻蚀工艺:干法刻蚀和湿法腐蚀。 干法刻蚀,是利用气态中产生的等离子体,通过经光刻而开出的掩蔽层窗口,与暴露于等离子体中的硅片行物理和化学反应,刻蚀掉硅片上暴露的表面材料的一种工艺技术法1。该工艺技术的突出优点在于,是各向异性刻蚀(侧向腐蚀速度远远小于纵向腐蚀速度,侧向几乎不被腐蚀),因此可以获得极其精确的特征图形。超大规模集成电路的发展,要求微细化加工工艺能够严格的控制加工尺寸,要求在硅片上完成极其精确的图形转移。任何偏离工艺要求的图形或尺寸,都可能直接影响产品性能或品质,给生产带来无法弥补的损害。由于干法刻蚀技术在图形转移上的突出表现,己成为亚微米尺寸下器件刻蚀的最主要工艺方法。在特征图形的制作上,已基本取代了湿法腐蚀技术。对于湿法腐蚀,就是用液体化学试剂(如酸、碱和溶剂等)以化学的方式去除硅片表面的材料。当然,在通过湿法腐蚀获得特征图形时,也要通过经光刻开出的掩膜层窗口,腐蚀掉露出的表面材料。但从控制图形形状和尺寸的准确性角度而言,由于湿法刻蚀是各向同性刻蚀(侧向与纵向腐蚀速度相同),在形成特征图形方面,湿法腐蚀一般只被用于尺寸较大的情况(大于3微米)。由于这一特点,湿法腐蚀远远没有干法刻蚀的应用广泛。但由于它的高选择比和批量制作模式,湿法腐蚀仍被广泛应用在腐蚀层间膜、去除干法刻蚀残留物和颗粒等工艺步骤中。干法刻蚀和湿法刻蚀的区别可以见如下示意图。(a) 湿法刻蚀的各向同性刻蚀剖面 (b)干法刻蚀的各向异性刻蚀剖面从刻蚀材料上来分类的话,刻蚀主要可分为金属刻蚀、介质刻蚀、硅(多晶硅)刻蚀。2、 刻蚀参数及现象在刻蚀过程中, 刻蚀速率、均匀性、选择比是刻蚀最主要的刻蚀参数。以下我们将分别进行介绍。2.1 刻蚀速率刻蚀速率是指刻蚀过程中去除表面材料的速度,通常用A/min表示。通常对于量产,为提高产能,希望有较高的刻蚀速率。在采用单片工艺的干法刻蚀设备中,这一参数是非常重要的。刻蚀速率的计算公式如下1 ER (etch rate)=T/t ER:刻蚀速率;T:刻蚀量;t:刻蚀时间; 刻蚀量单位为(A或m),刻蚀时间单位为分钟(min)。 刻蚀速率由工艺和设备变量决定。如,被刻蚀材料类型、刻蚀机的结构配置、使用的气体和工艺参数设置。刻蚀速率通常正比于刻蚀剂的浓度。硅片表面几何形状等因素不同,可造成不同的硅片之间不同的刻蚀速率。如,被刻蚀的面积较大,则会消耗较多的刻蚀剂,也就是说大部分气相刻蚀基在等离子反应过程中被消耗了,刻蚀剂浓度下降,刻蚀速率就随之减慢。反之,需刻蚀的面积较小,刻蚀速率就相对快些。这种现象,被称为负载效应。对于负载效应带来的刻蚀速率的变化,在有效的终点检测中起着重要的作用。2.2 均匀性 刻蚀速率的均一性,直接影响刻蚀整体的均匀性,是保证硅片刻蚀图形一致性的基础参数。其计算公式如下1 Ux=士Eave/2 (Emax-Em i n)*100% E:面内各点刻蚀速率的平均值;Emax:面内刻蚀速率最大值; Emin:面内刻蚀速率最小值;x:被刻蚀材料x的速率均一性,Ux的单位为(士%)等离子密度的分布、刻蚀腔体的构造均会影响刻蚀速率的均一性。一般而言,刻蚀速率的均一性受刻蚀腔体的限制,不同的刻蚀设备之间,在某一刻蚀速率的均一性上会有差别,体现出不同设备的性质。2.3 选择比 选择比,指在同一种刻蚀条件下,被刻蚀材料的刻蚀速率与另一种材料的刻蚀速率的比值。如,对光刻胶的选择比计算公式,如下所示1: Sr=Ef/Er Sr:对光刻胶的选择比,Ef::被刻蚀材料刻蚀速率,Er:光刻胶刻蚀速率 选择比低可以低到1:1,意味着被刻材料和另一种材料被去除的一样快。而选择比高可以高到100:1甚至100以上,意味着被刻蚀材料相对与另一种材料易被去除,而在去除过程中,不影响对另一种材料的刻蚀,将过刻蚀影响降致最低。 至于刻蚀条件中,应使用多高的选择比,则应根据被刻蚀膜膜质的情况、图形的结构和对所要刻蚀图形的形状、尺寸的要求,来选择适当的选择比。选择比高,有利于刻蚀高宽比较高的图形。但,对于多层膜结构的图形,在进行层间刻蚀时,则不适合使用选择比高的刻蚀条件。基于以上基本参数,我们可以根据工艺的需要,在调整实际刻蚀工艺参数时,对这些基础刻蚀参数进行选择和组合,以获得满足需要的刻蚀图形。 另外,从刻蚀管理的角度而言,除如上三种基本刻蚀参数外,刻蚀的整体均匀性、腔体之间的工艺差、刻蚀中的颗粒污染、残留物、等离子损伤等,均属于刻蚀参数范畴。它们将在刻蚀的整个工艺评价中,被逐一确认。只有既达到刻蚀参数的要求,又能刻蚀出符合规格的图形,这样的刻蚀条件,才能被应用在实际的量产中。3、 干法刻蚀3.1 干法刻蚀原理 干法刻蚀,是利用气态中产生的等离子体,通过经光刻而开出的掩蔽层窗口,与暴露于等离子体中的硅片行物理和化学反应,刻蚀掉硅片上暴露的表面材料的一种工艺技术法。所谓的等离子体,是宇宙中常见的物质,其中包含了中性的粒子、离子和电子,它们混合在一起,表现为电中性。在干法刻蚀中,气体中的分子和原子,通过外部能量的激发,形成震荡,使质量较轻的电子脱离原子的轨道与相邻的分子或原子碰撞,释放出其他电子,在这样的反复过程中,最终形成气体离子与自由活性激团。而干法刻蚀,则利用了气体等离子体中的自由活性激团与离子,与被刻蚀表面进行反应,以此形成最终的特征图形2。3.2 干法刻蚀过程干法刻蚀的过程如下图所示。 干法刻蚀时,在样品表面同时发生物理作用和化学作用。反应腔体内气体等离子体中的离子,在反应腔体的扁压作用下,对被刻蚀的表面进行轰击,形成损伤层,从而加速了等离子中的自由活性激团在其表面的化学反应,经反应后产生的反应生成物,一部分被分子泵从腔体排气口排出,一部分则在刻蚀的侧壁上形成淀积层。干法刻蚀就是在自由活性激团与表面反应和反应生成物不断淀积的过程中完成的。离子轰击体现了干法刻蚀的各向异性,而由于侧壁的淀积,则很好的抑制了自由活性激团反应时,同性作用对侧壁的刻蚀3。正因为干法刻蚀这一物理反应和化学反应相结合的独特方式,在各向异性和各向同性的相互作用下,可以精确的控制图形的尺寸和形状,体现出湿法刻蚀无法比拟的优越性,成为亚微米图形刻蚀的主要工艺技术之一。 刻蚀时,刻蚀气体主要分为惰性系、腐蚀系、氧化系以及C,F系等几类。 刻蚀反应,包括了物理反应和化学反应。根据等离子体中自由活性激团与主要表面材料的刻蚀反应,其基本化学反应式可归纳为如下几种。SiO2: 3SiO2+4CF3*3SiF4 +2 CO+2CO2 Si: Si+4F*SiF4 Si+4C1*SiCl4 W: W+6F*WF6A1: A1+3C1*A1C13 当然,在实际的刻蚀过程中,根据加工工序的要求,以及被刻蚀图形的膜层结构,还包括了上述以外的其他材料。如金属刻蚀中的Ti, TiN;金属配线层之间的有机或无机silica;钝化刻蚀中的SiON3;以及其他介质膜刻蚀中的SiN等。3.3 干法刻蚀应用分类 干法刻蚀,主要应用在图形形成工艺中。随着在生产制造上的广泛应用,针对图形加工,干法刻蚀可细致的被分为:有图形刻蚀和无图形刻蚀两大类。 大部分干法刻蚀工艺,涉及有图形刻蚀。而对于部分无图形刻蚀,仍然可以通过干法刻蚀来完成。如LDD侧壁、孔塞、光刻胶的剥离。虽然无图形刻蚀是湿法腐蚀的项目之一,但根据生产工艺的需要,在部分关键的无图形刻蚀中,均采用了干法刻蚀技术,如LDD的侧壁刻。LDD侧壁的形状和尺寸的好坏,会直接影响器件的特性,用干法刻蚀进行刻蚀的控制是最好的选择。加上湿法腐蚀对于氧化膜的腐蚀作用和各向同性特征,是无法形成LDD侧壁的特殊形貌的。另外对光刻胶的剥离则是另一个干法刻蚀的例子。 根据各加工工序、被刻蚀材料膜质的不同,干法刻蚀工艺又可以被细分成如下几项:a. 硅基板刻蚀(silicon etch) b.氮化膜刻蚀(SiN etch)。c.金属多晶硅刻蚀(W-silicide etch)d.多晶硅刻蚀(poly-silicon etch)。e.金属刻蚀(metal etch)f.金属钝化刻蚀(SioN3 etch )g.去胶刻蚀(Ash etch) 综上所述,干法刻蚀根据被刻蚀的材料类型,可系统的分成三种。即金属刻蚀、介质刻蚀和硅刻蚀。介质刻蚀是用于介质材料的刻蚀,如二氧化硅、氮化硅等。上述涉及介质的刻蚀,均属于介质刻蚀。硅刻蚀(包括多晶硅),应用于需要去除硅的场合,如刻蚀多晶硅晶体管栅和硅槽电容等。金属刻蚀,则主要在金属层上去掉铝合金复合层,制作出互连线。3.4 干法刻蚀设备 讨论干法刻蚀设备,先要介绍一下等离子刻蚀反应器。等离子刻蚀反应器有以下几种类型:圆桶式等离子体反应器、平板(平面)反应器、顺流刻蚀系统、三极平面反应器、离子铣、反应离子刻蚀(RIE )、高密度等离子体刻蚀机5。 从干法刻蚀等离子形成的方式而言,干法刻蚀方式主要包括有电极放电和无电极放电两大类。 有电极放电主要有:RIE即Reactive Ion Etch(高周波、低周波、2周波、相位制御)。 无电极放电主要为:诱导放电、U波、ECR-Electron Cycbrton Resonance6。所谓低周波,是指采用400kHz低周波的放电模式。上下部电极共用一个RF电源,离子追随底周波电界Vpp运动,可获得较大的离子能量,适用于氧化膜刻蚀。所谓2周波,则指在上部电极加载27MHz的周波,产生中密度的等离子体,在下部电极加载800kHz的周波,制御离子能量。这时,等离子密度与离子能量是分别独立控制的。此类装置适合于氧化膜刻蚀。所谓相位制御,是指上下部电极间加载13. 56MHz周波后,上下部的电源间由相位控制器(phase controller)进行位相制御。由位相控制离子能量,此类装置适合poly-silicon与poly-silicide刻蚀。 RIE反应离子刻蚀腔体,该干法刻蚀进行时,在高真空腔体内,导入气体。在平行电极板之间,加载13. 56MHz高周波,使导入的气体分子解离,产生离子和具有高反应性能的自由活性激团,用于其后的刻蚀反应。这一特性,体现出干法刻蚀的化学特性。在上下极板之间产生直流自偏置电压(DC bias),放置硅片的下部电极则处于负电位状态,等离子中的正离子在负电位的牵引下,得到加速,到达硅片表面。这一特点,体现了干法刻蚀的物理特性,使得朝硅片运动的离化基具有方向性,以此获得较好的侧壁图形。RIE刻蚀适用于氮化膜、氧化膜以及较早时期的钨刻蚀7。 诱导放电刻蚀腔体,在上部线圈上加载2MHz RF,形成等离子体,并由下部电极加载13. 56MHz的RF,用于控制离子能量。诱导放电模式中,等离子体密度与离子能量可以独立的被控制。同时,由于上部线圈的高RF,使这一诱导放电模式,可获得高密度的等离子体。此类设备,非常适用于铝、钨等金属膜质的刻蚀。作为诱导放电方式,包括了电子回旋加速反应器(ECR)、电感祸合(ICP )、双等离子体源反应器和磁增强反应离子刻蚀反应器(MERIE)等多种类型的反应器,被广泛的应用于高密度等离子体刻蚀机中。高密度等离子体技术,更有效的使输入功率耦合等离子体,产生较大的刻蚀基分解,从而获得10%的离化率,产生高方向性的低能离子,在高深宽比图形中获得各向异性刻蚀。如上所述,仅从等离子体形成的角度,简单的介绍了干法刻蚀相关的刻蚀反应腔体。而实际的刻蚀腔,要相对复杂得多。另外,从整个刻蚀系统而言,除刻蚀腔外,还有对准腔、搬送腔、冷却腔甚至去胶腔等腔体。这些腔体,将根据刻蚀类型的不同,进行不同的组合。如金属刻蚀机需要自带去胶腔,而介质膜等刻蚀却不需要。而且,从系统的角度来看,干法刻蚀系统,包括了气体流量制控制系统、RF输出系统、腔体温度控制系统、硅片的温度控制系统、压力控制系统、终点检出系统以及气体除害系统等,对应这些系统将有更多的相应装置,在本节中将不作为重点一一详述。3.5 终点检测系统 终点检测系统,是干法刻蚀除等离子刻蚀反应腔体外,又一重要的系统。在干法刻蚀过程中,被刻蚀层材料与最终刻蚀停止层的材料之间往往没有好的选择比,所以需要通过终点检测系统来监控刻蚀过程,判断刻蚀停止的最佳位置,以减少对刻蚀停止层的的过度刻蚀。 终点检测系统,是利用等离子体发光强度的变化来进行检测的。当检测刻蚀气体的发光强度时,通常在终点检出后,检出波形上升。而当检测反应生成物的发光强度时,在终点检出后,检出波形下降。而作为检出的终点,也就是刻蚀停止的地方,则发生在波形上升或下降的拐点附近。对于终点的具体检出位置,将依据检出窗口的大小,停止在波形变化的某一个区域。较为普遍的终点检测方法,是采用光发射谱,可以很方便的对刻蚀腔体进行实时监测。关于终点检出的波形,可以根据发光强度变化量的一次或二次微分换算而成。了解终点检测的波形形成方式,掌握终点检测窗口的设置,对于准确设置刻蚀工艺条件,是非常重要的。4、 湿法刻蚀4.1 湿法刻蚀原理 湿法刻蚀是通过腐蚀液进行刻蚀,又称湿法化学腐蚀法。湿法刻蚀在半导体工艺中被广泛地应用,其腐蚀过程与一般化学反应相似。由于是腐蚀样品上没有光刻胶覆盖的部分,因此,理想的刻蚀应当对光刻胶不发生腐蚀或腐蚀速率很慢。 刻蚀不同材料所选择的腐蚀液是不同的,所用的光刻胶对各种腐蚀剂都具有较强的适应性,在生产上往往用光刻胶对腐蚀剂的抗腐蚀能力作为衡量光刻胶质量的一个重要标志。湿法腐蚀尤其适合将多晶硅、氧化物、氮化物、金属与-族化合物等作为整片(即覆盖整个晶片表面)的腐蚀。湿法刻蚀的机制涉及如下三个核心步骤:反应物由于扩散传递到反应表面、化学反应在表面发生、来自于表面的产物由扩散清除。刻蚀剂溶液的扰动和温度将影响刻蚀速率,该速率指单位时间由由刻蚀去除的薄膜量。在集成电路处理时,多数湿法刻蚀是如下进行的:通过将晶圆片浸泡在化学溶剂中或将溶剂液喷洒到晶圆片上。对于浸泡刻蚀,圆片是浸在刻蚀溶剂液中的,且常常需要机械扰动,为的是确保刻蚀的统一性和一致的刻蚀速率。喷洒蚀刻已经逐渐替代了浸泡刻蚀,因为前者通过持续地将新鲜刻蚀剂喷洒到圆片表面,这样便极大地增加了刻蚀速和一致性。4.2 常见湿法刻蚀技术4.2.1 二氧化硅的刻蚀 二氧化硅的湿法刻蚀通常利用稀释的氢氟酸溶液,其中也可以加入氟化铵(NH4F)。加入氟化铵是提供缓冲的HF溶液(BHF),又称作缓冲氧化层刻蚀(buffered-oxide-etch,BOE)。HF加入NH4F可以控制酸碱值,并且可以补充氟离子的缺乏,这样可以维持稳定的刻蚀效果。二氧化硅的整体反应式:SiO2+6HFH2SiF6+2H2O SiO2的刻蚀速率由腐蚀溶液,腐蚀剂的浓度、搅动与温度决定。另外,密度、表面多孔度、微结构与氧化物内含的杂质皆会影响刻蚀的速率。腐蚀液温度一定时,SiO2的腐蚀速率取决于腐蚀液的配比及SiO2的掺杂程度,掺杂磷浓度越高,腐蚀速率越快,掺硼浓度越高,腐蚀速率越慢。SiO2对腐蚀的温度十分敏感。温度越高,腐蚀越高,腐蚀速率越快。因此要严格控制腐蚀液的温度。 腐蚀液搅动对腐蚀速率有一定的影响,一般讲,硅片与腐蚀液的相对运动可以提高腐蚀速率和腐蚀均匀性。常见的方法有对流、鼓泡、机械振动(超声波)和喷雾等。喷雾腐蚀速率最快、均匀性好、侧向腐蚀最小,是一种很好的湿法刻蚀方法。超声波腐蚀易引起浮胶、侧向腐蚀严重,因此少用。 在腐蚀刚开始使用时F量多,但使用一段时间后,F量逐渐减少,腐蚀效果明显消弱。为了提高F浓度,腐蚀液中加入少量的NH4F,它能及时补充F。因此,有人称它为缓冲剂。为了保证重复性好,腐蚀液要每天更换。腐蚀液的pH值、腐蚀液的温度、腐蚀时间之间关系要严格控制。4.2.2 硅的刻蚀 在TTL(晶体管晶体管逻辑)电路有一种介质隔离技术,那么这种隔离是如何形成的?一般用HF和HNO3作为腐蚀液刻出槽来。其腐蚀速度与腐蚀液中两种酸的比例关系很大。腐蚀有两种方法进行。1)先在硅表面上生长一层较厚且致密的SiO2层,然后利用光刻和刻蚀的方法把需要的刻槽上的SiO2腐蚀掉,这样就裸露出硅来,然后再放入配制好的腐蚀液中(HNO3:HF=8:1(体积比)。这种腐蚀速度十分快,经过23min,硅就被腐蚀出1020m深槽。腐蚀后去除表面SiO2层,就露出硅片表面,然后按照工艺重新生长SiO2作介质隔离之用或其他加工。在腐蚀液中加入少量冰醋酸起到缓冲作用。硝酸是强氧化剂,它将单质的硅氧化成SiO2,其反应如下:3Si+4HNO3=3SiO2+2H2O+4NO生成的SiO2不溶于水也不溶于HNO3,但能与HF生成可溶性络合物,这样硅就被腐蚀掉了。2)用金属铝作掩护膜,由于Al对HNO3和HF的抗蚀能力较强,可以在硅片表面用蒸发或者溅射方法生长一Al层,然后用光刻和刻蚀方法把槽部分的Al层去掉而裸露出硅,然后再把硅片进入腐蚀液中腐蚀硅。以上两种方法多都可以使用,但在使用时会发出大量热量来,如不注意散热或降温,其腐蚀效果不好,因此腐蚀时都放在冰水中进行。4.2.3 金属铝的刻蚀 在半导体干法刻蚀工艺中,根据待刻蚀材料的不同,可分为金属刻蚀、介质刻蚀和硅刻蚀。金属刻蚀又可以分为金属铝刻蚀、金属钨刻蚀和氮化钛刻蚀等。目前,金属铝作为连线材料,仍然广泛用于DRAM和flash等存储器,以及0.13um以上的逻辑产品中。 金属铝刻蚀通常用到以下气体:Cl2、BCl3、Ar、N2、CHF3和C2H4等。Cl2作为主要的刻蚀气体,与铝发生化学反应,生成的可挥发的副产物AlCl3被气流带出反应腔。BCl3一方面提供BCl3+,垂直轰击硅片表面,达到各向异性的刻蚀。另一方面,由于铝表面极易氧化成氧化铝,这层自生氧化铝在刻蚀的初期阻隔了Cl2和铝的接触,阻碍了刻蚀的进一步进行。添加BCl3则利于将这层氧化层还原(如方程式1),促进刻蚀过程的继续进行。Al2O3+3BCl32AlCl3+3BOClAr电离生成Ar,主要是对硅片表面提供物理性的垂直轰击。N2、CHF3和C2H4是主要的钝化气体,N2与金属侧壁氮化产生的AlxNy,CHF3和C2H4 与光刻胶反应生成的聚合物会沉积在金属侧壁,形成阻止进一步反应的钝化层。 一般来说,反应腔的工艺压力控制在614毫托。压力越高,在反应腔中的Cl2浓度越高,刻蚀速率越快。压力越低,分子和离子的碰撞越少,平均自由程增加,离子轰击图形底部的能力增强,这样刻蚀反应速率不会降低甚至于停止于图形的底部。 在金属铝的上下通常会淀积金属钛或氮化钛,形成氮化钛/铝/氮化钛/钛的结构。用来刻蚀铝的Cl2与钛反应生成挥发性相对较低的TiCl4,刻蚀氮化钛的速率只有刻蚀铝的1/31/4,因此减少Cl2或是增加BCl3和偏置功率,都有利于提高氮化钛和钛的刻蚀速率。 在金属铝中通常会加入少量的硅和铜来提高电子器件的可靠性。硅和Cl反应生成挥发性的SiCl4,很容易被带出反应腔。铜与Cl反应生成的CuCl2挥发性却不高,因此需要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论