公式法解一元二次方程.2.2 公式法.doc_第1页
公式法解一元二次方程.2.2 公式法.doc_第2页
公式法解一元二次方程.2.2 公式法.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学时间课题21.2.2公式法课型新授教学媒体多媒体教学目标知识技能1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.过程方法1.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;2.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.3.提高学生的运算能力,并养成良好的运算习惯.情感态度1.感受数学的严谨性和数学结论的确定性.2.提高学生运算能力,使学生获得成功体验,建立学习信心.教学重点求根公式的推导,公式的正确使用教学难点求根公式的推导教学过程设计教学程序及教学内容师生行为设计意图一、复习引入总结用配方法解一元二次方程的步骤:1移项;2化二次项系数为1;3方程两边都加上一次项系数的一半的平方;4原方程变形为(xn)2p的形式;5如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解导语:我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程?二、探究新知活动1.学生观察下面两个方程思考它们有何异同?;6x2-7x+1=0 活动2.按配方法一般步骤同时对两个方程求解:1.移项得到6x2-7x=-1,2.二次项系数化为1得到3.配方得到 x2-x+()2=-+()2 x2+x+()2=-+()24.写成(x+n)2=p形式得到(x-)2=,(x+)2=5.直接开平方得到x-=,注意:(x+)2=是否可以直接开平方?活动3.对(x+)2=观察,分析,在时对的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法.活动5.初步使用公式解方程6x2-7x+1=0.活动6.总结使用公式法的一般步骤:把方程整理成一般形式,确定a,b,c的值,注意符号 求出的值,方程,当0时,有两个不等实根;=0时有两个相等实根;0时无实根. 在0的前提下把a,b,c的值带入公式x=进行计算,最后写出方程的根.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况(1)2x2-4x-1=0 (2)5x+2=3x2(3)(x-2)(3x-5)=0 (4)4x2-3x+1=02.课本例23 用公式法解决实际问题教师引导学生阅读教材本章引言中的问题,用公式法解一元二次方程设雕像下部高x m,得方程x22x40用公式法解这个方程得x1即x11,x21如果结果保留小数点后两位,那么,x11.24,x23.24这两个根中,只有x11.24符合问题的实际意义,因此雕像下部的高度应设计为约1.24 m4. 教材第12页练习1,2四、小结归纳本节课应掌握:1.用根的判别式判断一个一元二次方程是否有实数根2.用求根公式求一元二次方程的根3. 一元二次方程求根公式适用于任意一个一元二次方程.五、作业设计P17:4、5教师提出问题,学生思考.学生观察思考尝试回答学生对比进行配方,通过自主探究,合作交流,展开对求根公式的推导让学生尝试对的值进行分析学生尝试归纳,师生总结学生初步使用公式,教师规范板书。之后总结使用公式步骤学生独立完成,教师巡回检查,师生集体订正学生归纳,总结阐述,体会,反思.并做出笔记.为推导公式作铺垫,激发学生探索欲望学生回顾配方法的解题思路,从数字系数过渡到字母系数进行配方,推导公式对比探究,结合字母表示数的特点,尝试推导求根公式,培养学生发现问题的能力通过学生亲自解方程的感受与经验,体会数式通性,为感受数学的严谨性和数学结论的确定性.对的值的情况具有不确定性进行讨论为以后熟练使用公式打基础使学生熟练使用本节课知识解题加强教学反思,帮助学生养成系统整理知识的学习习惯加深认识,深化提高,形成学生自己的知识体系.教 学 反 思本课是在学习了配方法后通过配方法推导公式,得出公式,从而解方程,公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论