




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九章一对一 一对一九年级数学教师辅导讲义学员编号: 年 级:九年级 课时数:1 学员姓名: 辅导科目: 数学 学科教师: 课 题 反比例函数及二次函数的实际应用授课时间: 备课时间:教学目标掌握反比例的相关知识,学会用二次函数知识解决实际问题。教学内容知识点、函数的图象特征与a、b、c的关系1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为()A.a0,b0,c0B.a0,b0,c=0C.a0,b0,b0,c0; a+b+c 0a-b+c 0b2-4ac0abc 0 ;其中正确的为( ) ABCD3.当bbc,且abc0,则它的图象可能是图所示的( ) 5.在同一坐标系中,函数y= ax2+c与y= (a0时函数图像的两个分支分别在第一,三象限内在每一象限内,y随x的增大而减小;当k0)的图像上,则点E的坐标是( )A(,) B(,) C(,) D(,) 4 、(2006,湖南常德)如图所示,已知反比例函数y1=(m0)的图像经过点A(2,1),一次函数y2=kx+b(k0)的图象经过点C(0,3)与点A,且与反比例函数的图像相交于另一点B (1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标5.(02安徽)已知一次函数的图象与双曲线y交于点(1,m),且过点(0,1),求该一次函数的解析式知识点四、二次函数应用知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点:1运用配方法求最值;2构造一元二次方程,在方程有解的条件下,利用判别式求最值;3建立函数模型求最值;4利用基本不等式或不等分析法求最值二次函数的一般式()化成顶点式,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值) 即:、当时,函数有最小值,并且当,; 、当时,函数有最大值,并且当,、如果自变量的取值范围是,如果顶点在自变量的取值范围内,则当,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性: 1、如果在此范围内随的增大而增大,则当时, ,当时,; 2、如果在此范围内随的增大而减小,则当时, ,当时,如: 求下列二次函数的最值:(1)求函数的最值解: 当时,有最小值,无最大值 (2)求函数的最值 解:,对称轴为当一、利润最大问题例1:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?例2: 某产品每件成本10元,试销阶段每件产品的销售价(元)与产品的日销售量(件)之间的关系如下表: 若日销售量是销售价的一次函数 求出日销售量(件)与销售价(元)的函数关系式; 要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?x(元)152030y(件)252010练习1某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件如何提高售价,才能在半个月内获得最大利润?练习2某旅行社组团去外地旅游,30人起组团,每人单价800元旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?练习3.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格。经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件。假定每月销售件数y(件)是价格X的一次函数.(1)试求y与x的之间的关系式.(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少?(总利润=总收入总成本)练习4.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。(1)设X天后每千克活蟹的市场价为P元,写出P关于X的函数关系式。(2)如果放养X天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式。(2)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额收购成本费用),最大利润是多少?练习5.(2010安徽中考)、春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售。(1)九(1)班数学建模兴趣小组根据调查,整理出第天(且为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)捕捞量(kg)(1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第天的收入(元)与(天)之间的函数关系式;(当天收入日销售额日捕捞成本)(3)试说明(2)中的函数随的变化情况,并指出在第几天取得最大值,最大值是多少?练习5. 某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图1所示;种植花卉的利润y2与投资量x成二次函数关系,如图2所示(注:利润与投资量的单位:万元) 分别求出利润y1与y2关于投资量x的函数关系式;如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?获取最大利润是多少?二、面积最大(小)值问题例3:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cms的速度移动,同时点Q从点B出发沿BC边向点C以2cms的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动(1)运动第t秒时,PBQ的面积y(cm)是多少?(2)此时五边形APQCD的面积是S(cm),写出S与t的函数关系式,并指出自变量的取值范围(3)t为何值时s最小,最小值时多少?例4:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质)花圃的长与宽如何设计才能使花圃的面积最大?练习6 .一块矩形耕地大小尺寸如图所示(单位:m),要在这块土地上沿东西方向挖一条水渠,沿南北方向挖两条水渠,水渠的宽为x(m),余下的可耕地面积为y()。(1) 请你写出y与x之间的解析式;(2) 根据你写出的函数解析式,当水渠的宽度为1m时,余下的可耕地面积为多少?(3) 若余下的耕地面积为4408,求此时水渠的宽度。三、其他问题例5.B船位于A船正东26km处,现在A、B两船同时出发,A船发每小时12km的速度朝正北方向行驶,B船发每小时5km的速度向正西方向行驶,何时两船相距最近?最近距离是多少?例6.心理学家研究发现:一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力y随时间t的变化规律有如下关系式:(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?例7、 (安徽中考) 杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图。求演员弹跳离地面的最大高度;已知人梯高BC3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由。销售量p(件)P=50x销售单价q(元/件)当1x20时,q=30+x;当21x40时,q=20+例8、(2013安徽中考)某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示。(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式。(3)这40天中该网店第几天获得的利润最大?最大利润是多少? 二次函数的实际应用回家作业1某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示试确定、的值;求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;“五一”之前,几月份出售这种水产品最大利润是多少?( ) A,;4B,;11C,;6D,;2圣路易斯拱门是座雄伟壮观的抛物线形建筑物拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度。( )A100 B150 C200 D2203、如图,一单杠高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端拴于立柱与横杠结合处,绳子自然下垂呈抛物线形状,一身高0.7m的小孩站在离左边立柱0.4m处,其头部刚好触到绳子,求绳子最低点到地面的距离。4如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽,如果水位上升,就将达到警戒线,这时水面的宽为若洪水到来,水位以每小时速度上升,经过多少小时会达到拱顶?( )AB C D5005.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;如果商场要想每天获得最大销售利润,每件商品的定价为多少最合适?最大销售利润为多少?6.某商场批单价为25元的旅游鞋。为确定 一个最佳的销售价格,在试销期采用多种价格进性销售,经试验发现:按每双30元的价格销售时,每天能卖出60双;按每双32元的价格销售时,每天能卖出52双,假定每天售出鞋的数量Y(双)是销售单位X的一次函数。 (1)求Y与X之间的函数关系式; (2)在鞋不积压,且不考虑其它因素的情况下,求出每天的销售利润W(元)与销售单价X之间的函数关系式; (3)销售价格定为多少元时,每天获得的销售利润最多?是多少?7、 如图,有长为30米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a10米),当AB为多少米时,围成的花圃面积最大。8. 某超市经销一种销售成本为每件40元的商品。据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件。设销售单价为x 元(x50),一周的销售量为y件。 写出y与x的函数关系式(标明x的取值范围); 设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大? 超市对该种商品投入不超过10000元的情况下,使一周销售利润达到8000元,销售单价应定为多少? 9、( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0x30)。y值越大,表示接受能力越强。 (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第10分时,学生的接受能力是什么? (3)第几分时,学生的接受能力最强? 10、卢浦大桥拱形可以近似看作抛物线的一部分在大桥截面111000的比例图上,跨度AB5 cm,拱高OC0.9 cm,线段DE表示大桥拱内桥长,DEAB,如图(1)在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1 cm作为数轴的单位长度,建立平面直角坐标系,如图(2) (1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域; (2)如果DE与AB的距离OM0.45 cm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 两兄弟合伙买房合同标准文本
- 半包装修合同正规范例
- 护士聘用协议书范文二零二五年
- 工程地质勘探合同
- 代销茶叶合同标准文本
- 二零二五版货物运输合同的赔偿金额的确定
- 二零二五主债权及不动产抵押担保合同
- 货物运输合同托运人需注意事项
- 二零二五车辆指标租赁协议书范例
- 二零二五版公司并购业务梳理
- 安徽省合肥市2025届高三下学期3月二模试题 语文 含解析
- 命案防控讲座课件内容
- 2024年广西职业院校技能大赛中职组《大数据应用与服务》赛项竞赛样题
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 常用CMYK色值表大全
- 消化道出血护理ppt(共17张PPT)
- 珠三角一年断指四万
- 2022版义务教育(数学)课程标准(含2022年修订部分)
- 快板 绕口令 《玲珑塔》
- 台湾民法典目录
- 8.8级螺栓上海红本价
评论
0/150
提交评论