




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公式法课标内容内容结构行为动词行为条件行为程度能灵活运用平方差公式进行因式分解课标分解与整式乘法的联系理解平方差公式与整式乘法的互逆关系结合具体实例理解平方差公式理解掌握平方差公式的结构特征,并会应用进行判别理解掌握观察公式,总结特点平方差公式的结构特征灵活运用平方差公式进行因式分解灵活运用运用平方差公式进行因式分解运用探究活动教学目标【知识与技能】通过(a+b)(a-b)=a2-b2的逆向变形得出公式法因式分解的方法的过程,发展我们的逆向思维和推理能力。2、通过学习,学生能够灵活运用提公因式法和平方差公式因式分解(直接运用公式不超过两次)并且分解彻底.【过程与方法】经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,渗透数学的“互逆”、换元、整体的思想,感受数学知识的完整性【情感态度与价值观】在探究的过程中培养学生独立思考的习惯,在交流的过程中学会向别人清晰地表达自己的思维和想法,在解决问题的过程中让学生深刻感受到“数学是有用的”。教材分析 本节课是提公因式法后运用公式法的第一课时用平方差公式法分解因式。它是整式乘法中平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善于交流的良好学习惯。教学重难点分析【教学重点】 会用平方差公式进行因式分解【教学难点】准确理解和掌握公式的结构特征,灵活运用平方差公式进行因式分解。【突破方法】教师引导,学生自主探索与小组合作交流法教学建议1、 本节课的教学设计借助于学生已有的整式乘法运算的基础,给学生留有充分探索与交流的时间和空间,让他们经历从整式乘法到分解因式的转换过程并能用符号合理的表示出分解因式的关系式,同时感受到这种互逆变形的过程和数学知识的整体性。2 、有意识的培养学生逆向思考问题的习惯,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维习性,提高学习效果、学习兴趣,及思维能力和整体素质3、保证基本的运算技能的训练,避免复杂的题型训练。探究活动设计本节教学共设计了三大探究活动:一是整式乘法中的平方差公式进行逆向运用的探究;二是平方差公式的结构特点;三是层层探究怎样灵活运用平方差公式进行因式分解 【探究活动一】观察与思考 这组因式分解的式子,左边有什么共同特征?右边有什么共同特征?你能用语言描述一下吗?探究步骤:学生先独立探究;学生分组讨论探究的结果;师生共同归纳发现的结论预期效果:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力 【探究活动二】观察公式的结构特点,思考下列多项式能用平方差公式因式分解吗?若能,可以看成哪两个数或式的平方差?若不能,说说你的理由。探究目的:让学生更好地理解公式的结构特点,以便下一步能更好的应用公式。探究步骤:学生先独立观察学生小组交流讨论师生共同通过实例归纳概括 【探究活动三】在典例的引领下,引导学生探究平方差公式中的a,b的意义利用平方差公式进行因式分解的一般步骤探究目的:通过例题的讲解、练习的巩固让学生逐步掌握了运用平方差公式进行因式分解。例题及练习呈现的次序尽量本着由简入难螺旋上升的原则。让学生更好地掌握平方差公式分解因式的方法探究步骤:教师先引导学生学习例题的解题方法教师放手学生,让学生自己通过例题1,2探究总结平方差公式中的a,b的意义教师先点拨,然后学生小组探究例题3,总结归纳利用平方差公式进行因式分解的一般步骤教学案例设计本节课的教学设计借助于学生已有的整式乘法运算的基础,给学生留有充分探索与交流的时间和空间,让他们经历从整式乘法到分解因式的转换过程并能用符号合理的表示出分解因式的关系式,同时感受到这种互逆变形的过程和数学知识的整体性。本节课主要设计了三处探究活动,目的是既能让学生充分的体会到知识的前后联系,又能让学生通过亲身体验体会到知识的来龙去脉,还能让学生能够从错误中吸取教训,从错误中积累经验。教学过程设计复习回顾:1、前一节课我们学习一种因式分解的方法是什么?2、分解因式: 3、为了检验分解因式的结果是否正确,可以用 _运算来检验。4、我们已经学过哪些乘法公式?5、计算下列各式:(1)(a+b)(a-b)= (2) (x+5)(x-5)= (3) (3x+y)(3x-y)= 情境创设:这组因式分解的式子,左边有什么共同特征?右边有什么共同特征?你能用语言描述一下吗?新课讲解:平方差公式:a2-b2= (a+b)(a-b)公式特点:(1)公式左边:被分解的多项式含有两项,且这两项异号,并且能写成()()的形式(2)公式右边:分解的结果是两个底数的和乘以两个底数的差的形式1下列多项式能转化成()()的形式吗?如果能,请将其转化成()()的形式(1) m2 -1 (2) 4m2 -9 (3) 4m2+9(4) x2 -25y 2 (5) -x2 -25y2 (6) -x2+25y22. 做一做你能试着把下列各式分解因式吗?(1)a2-16(2)64-b23. 解决问题 例1:把下列各式分解因式(1) 16a2-9b2 (2) 9(a+b)2-4(a-b)2在使用平方差公式分解因式时,要 注意:先把要计算的式子与平方差公式对照,明确哪个相当于 a , 哪个相当于 b.4.抢答题 (1)a282 (2)16x2 y23) y2 + 4x2 (4) 4k2 25m2n25.当场编题考考你首先把a b换成各种不同的情况然后由学生当场出题当场解答6.例二:4x3 - 9xy2方法:先考虑能否用提取公因式法,再考虑能否用平方差公式分解因式结论:多项式的因式分解要分解到不能再分解为止巩固训练1. 解决问题如图,求圆环形绿地的面积2. 分解因式: 4x3 - 4x 2. x4-y43.再攀高峰如图,在边长为6.8cm正方形钢板上,挖去4个边长为1.6cm的小正方形,求剩余部分的面积4. 考考你你知道992-1能否被100整除吗?说说你是怎么想的?回顾小结1.因式分解的一个重要工具平方差公式2.我们在进行因式分解时应注意的问题首先提取公因式然后考虑用公式因式分解要进行到底当堂检测1.选择题:(1)在多项式x+y, x-y ,-x+y, -x-y中,能利用平方差公式分解的是( ) a .1个 b.2个 c.3个 d.4个(2)4a-1分解因式的结果应是 ( )(4a+1)(4a-1) b.( 2a 1)(2a 1)(2a+1)(-2a+1) d.(2a+1) (2a-1)2. 把下列各式分解因式:(1) -9x2+4y2 (2)9(x+y)2-4y2 (3)18-2b 布置作业a组 课本p100 1(1)-(6) 2(1)(3)(5)(6) b组 课本p100 1(1)-(5) 2(1)-(3) c组 课本p100 1(1)-(4) 2(1)-(3)【板书设计】公式法(1) -平方差公式a2-b2=(a+b)(a-b)特征:二项式平方差(一正一负)例题1-例题3小组展示【课堂评价】本节教学较为成功的做法:1、本节课的教学设计借助于学生已有的整式乘法运算的基础,给学生留有充分探索与交流的时间和空间,让他们经历从整式乘法到分解因式的转换过程并能用符号合理的表示出分解因式的关系式,同时感受到这种互逆变形的过程和数学知识的整体性。2、本节课主要设计了三处探究活动,目的是既能让学生充分的体会到知识的前后联系,又能让学生通过亲身体验体会到知识的来龙去脉,还能让学生能够从错误中吸取教训,从错误中积累经验。3、在教学中充分发挥小组之间的互助作用和教学评价的导向作用,以学习评价促进学生的发展。在本节教学中,我主要通过学生自评、互评与教师评价相结合的方式对学生的学习加以评价:学生课堂学习过程中的自我过评价表 年级: 学生姓名: 时间: 评价内容评价标准评价级别优良好一般新课导入a、学习状态饱满,注意力集中b、能够运用旧知(情境)获得探究新知的兴趣探究新知a、积极发表见解,主动提出问题,思维有条理性。b、见解和问题有独创性和挑战性。c、学习中既有紧张感又有愉悦感,获得积极情感体验。典例分析a、做题过程规范工整,准确率高b、不理解的问题能够及时的请教老师c、能自我控制,注意调节学习情绪。总体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津机电职业技术学院《产品创意设计2》2023-2024学年第二学期期末试卷
- 内蒙古科技职业学院《产品设计二维构成基础》2023-2024学年第二学期期末试卷
- 高中语文AR课件
- 立春养生知识
- 《消费者行为分析》课件
- 2025至2031年中国刮柄行业投资前景及策略咨询研究报告
- 2025培训机构转让合同范本
- 2024初三60天中考冲刺动员会上,校长讲话既然我们都是追梦人,那就让我们仗剑走天涯,冲刺做英雄
- 2025至2030年中国花蝶深蓝数据监测研究报告
- 重庆城市减震施工方案
- 自愿离婚的协议范本5篇
- 商业运营服务合作协议
- 员工心理健康关怀与支持措施试题及答案
- 儿童支气管哮喘诊断与防治指南(2025)解读
- 模拟考保安证试题及答案
- 2024-2025学年人教版七年级(下)期中数学试卷(考试范围:第7~9章) (含解析)
- 2025-2030中国连裤袜和紧身裤行业市场发展趋势与前景展望战略研究报告
- 冀教版五年级下册求最大公因数练习200题及答案
- 2024年国家林业和草原局直属单位招聘考试真题
- 国家安全教育日知识竞赛考试题库400题(含答案)
- 学生心理健康一生一策档案表
评论
0/150
提交评论