




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市学而优教育咨询有限公司高中数学必修二学案:1-3-1柱体锥体台体的表面积学习要求1通过对柱、锥、台体的研究,掌握柱、锥、台体的表面积的求法;2了解柱、锥、台体的表面积计算公式;能运用柱、锥、台的表面积公式进行计算和解决有关实际问题;3培养空间想象能力和思维能力 学法指导通过经历几何体的侧面展开过程,感知几何体的形状,理解几何体的表面积的推导过程,提高空间思维能力和空间想象能力,增强探索问题和解决问题的信心1棱柱、棱锥、棱台是由多个 围成的多面体,它们的表面积就是各个面的面积的 2圆柱、圆锥、圆台的侧面展开图分别是 、 、 3旋转体的表面积名称图形公式圆柱底面积:s底 侧面积:s侧 表面积:s2r(rl)圆锥底面积:s底 侧面积:s侧 表面积:s 圆台上底面面积:s上底 下底面面积:s下底 侧面积:s侧 表面积:s 一、棱柱、棱锥、棱台的表面积问题1在初中我们已经学过正方体和长方体的表面积,以及它们的展开图,你知道正方体和长方体的展开图的面积与正方体和长方体的表面积的关系吗?答正方体、长方体是由多个平面图形围成的多面体,它们的表面积就是围成它们的各个面面积的和,也就是展开图的面积如下图所示问题2几何体的表面积等于它的展开图的面积,那么,棱柱,棱锥,棱台的侧面展开图是怎样的?如何求棱柱,棱锥,棱台的表面积?答如下图所示,只需求出各个展开图中的各部分平面图形的面积,然后求和即可例1已知棱长为a,各面均为等边三角形的四面体sabc,求它的表面积分析由于四面体sabc的四个面是全等的等边三角形,所以四面体的表面积等于其中任何一个面面积的4倍解先求sbc的面积,过点s作sdbc,交bc于点d. 因为bca,sda.所以ssbcbcsdaaa2.因此,四面体sabc的表面积s4a2a2.小结在解决棱锥、棱台的侧面积、表面积问题时往往将已知条件归结到一个直角三角形中求解,为此在解此类问题时,要注意直角三角形的应用例 已知棱长为5,底面为正方形,各侧面均为正三角形的四棱锥sabcd,求它的表面积解四棱锥sabcd的各棱长均为5,各侧面都是全等的正三角形设e为ab的中点,则seab.s侧4ssab4abse2525.s表面积s侧s底252525(1)例 已知正四棱台(上、下底是正方形,上底面的中心在下底面的投影是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积解如图,e、e1分别是bc、b1c1的中点,o、o1分别是下、上底面正方形的中心,则o1o为正四棱台的高,则o1o12.连接oe、o1e1,则oeab126,o1e1a1b13.过e1作e1hoe,垂足为h,则e1ho1o12,oho1e13,heoeo1e1633.在rte1he中,e1e2e1h2he2122323217,所以e1e3.所以s侧4(b1c1bc)e1e2(126)3108.小结解决有关正棱台的问题时,常用两种解题思路:一是把基本量转化到直角梯形中去解决;二是把正棱台还原成正棱锥,利用正棱锥的有关知识来解决跟踪训练在上例中,把棱台还原成棱锥,你能利用棱锥的有关知识求解吗?解如图,正四棱台的侧棱延长交于一点p. 取b1c1、bc的中点e1、e,则ee1的延长线必过p点(以后可以证明)o1、o分别是正方形a1b1c1d1与正方形abcd的中心由正棱锥的定义,cc1的延长线过p点,且有o1e1a1b13,oeab6,则有,即.所以po1o1o12.在rtpo1e1中,pepoo1e122323217,pe2po2oe2242626217,所以e1epepe1633.s侧 =所以e1epepe12(12+6)3108.例 将一个棱长为a的正方体,切成27个全等的小正方体,则所有小正方体的表面积为( ),表面积增加了()a6a2b12a2c18a2 d24a2答案c,b解析原来正方体表面积为s16a2,切割成27个全等的小正方体后,每个小正方体的棱长为a,其表面积为62a2,总表面积s227a218a2,增加了s2s112a2.例 (2010福建文,3)若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于()a. b2 c2 d6答案d解析原几何体是一个底面边长为2,高为1的正三棱柱,则s侧3216.例 棱锥的一个平行于底面的截面把棱锥的高分成12(从顶点到截面与从截面到底面)两部分,那么这个截面把棱锥的侧面分成两部分的面积之比等于()a19 b18 c14 d13答案b解析两个锥体的侧面积之比为19,小锥体与台体的侧面积之比为18,故选b.例 四棱台的两底面分别是边长为x和y的正方形,各侧棱长都相等,高为z,且侧面积等于两底面积之和,则下列关系式中正确的是()a. b. c. d.答案c解析由条件知,各侧面是全等的等腰梯形,设其高为h,则根据条件得,消去h得,4z2(xy)2(yx)2(yx)2(x2y2)2.4z2(xy)24x2y2,z(xy)xy,.例 已知棱长为a的正方体abcda1b1c1d1,o为上底面a1b1c1d1的中心,e为棱a1b1上一点,则aeeo的长度的最小值是_答案a解析将正方体一部分展开如图,aeeo在a、o、e三点共线时取最小值aoa.例 长方体abcda1b1c1d1中,ab3,ad2,cc11,一条绳子从a沿着表面拉到点c1,求绳子的最短长度解析绳子的最短长度有三种情况,如下图:图(1)是将面abb1a1与a1b1c1d1展开,ac13;图(2)是由a经过面abb1a1和bcc1b1到c1,ac1;图(3)是由a经过面abcd和bcc1b1到c1,ac12.比较上述三种情况知,ac1最小为3.点评(1)防止只画出一个图形就下结论,或者以为长方体的对角线ac1是最短线路(2)解答多面体表面上两点间最短线路问题,一般地都是将多面体表面展开,转化为求平面内两点间线段长例 底面为正多边形,顶点在底面的射影是正多边形的中心的棱锥称作正棱锥,其侧面等腰三角形的高称作棱锥的斜高,已知正四棱锥底面正方形的边长为4cm,高与斜高的夹角为30,如图所示,求正四棱锥的侧面积和表面积解析正四棱锥的高po,斜高pe,底面边心距oe组成rtpoe.oe2cm,ope30,hpe4cm,因此s侧ch(44)432(cm2),s表面积s侧s底321648(cm2)例 已知某几何体的三视图如图,求该几何体的表面积(单位:cm)解析几何体的直观图如图这是底面边长为4,高为2的同底的正四棱柱与正四棱锥的组合体,易求棱锥的斜高h2,其表面积s4244244816 cm2.例 一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.解:设长方体的长、宽、高、对角线长分别为xcm、ycm、zcm、lcm依题意得: 由(2)2得:x2+y2+z2+2xy+2yz+2xz=36(3)由(3)(1)得x2+y2+z2=16即l2=16所以l=4(cm)。点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。例 一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是( )a2 b3 c6 d解析:设长方体共一顶点的三边长分别为a=1,b,c,则对角线l的长为l=;答案d。点评:解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素棱长。例 所有棱长为1的三棱锥的全面积为_解析s41.例 如图所示,在边长为4的正方形纸片abcd中,ac与bd相交于o,剪去aob ,将剩余部分沿oc、od折叠,使oa、ob重合,求以a、(b)、c、d、o为顶点的四面体的全面积和体积【解析】翻折后的几何体为底面边长为4,侧棱长为2的正三棱锥,斜高为2,高为,所以该四面体的全面积为3(42)42124,体积为16.【答案】124,例 (2012安徽文数)一个几何体的三视图如图,该几何体的表面积是(a)372 (b)360 (c)292 (d)280答案:b【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。.【方法技巧】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。二、圆柱、圆锥、圆台的表面积的求法问题1如何根据圆柱的展开图,求圆柱的表面积?答圆柱的侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母线),设圆柱的底面半径为r,母线长为l,则有:s圆柱侧2rl,s圆柱表2r(rl),其中r为圆柱底面半径,l为母线长问题2如何根据圆锥的展开图,求圆锥的表面积?答圆锥的侧面展开图为一个扇形,半径是圆锥的母线,弧长等于圆锥底面周长,侧面展开图扇形面积为2rlrl,s圆锥侧rl,s圆锥表r(rl),其中r为圆锥底面圆半径,l为母线长问题3如何根据圆台的展开图,求圆台的表面积?答圆台的侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆台下底周长,如右图,解得:xl.s扇环s大扇形s小扇形(xl)2rx2r(rr)xrl(rr)l,所以,s圆台侧(rr)l,s圆台表(r2rlrlr2)问题4圆柱、圆锥、圆台三者的表面积公式之间有什么关系?答如下图所示:s柱2r(rl)s台(r2r2rlrl)s锥r(rl)例3一圆台形花盆,盆口直径20 cm,盆底直径15 cm,底部渗水圆孔直径1.5 cm,盆壁长15 cm.为美化外表而涂油漆,若每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆?(取3.14,结果精确到1 ml)解如图,由圆台的表面积公式得一个花盆外壁的表面积s()21515()2 1 000 (cm2)0.1 (m2)答:涂100个花盆需油漆0.11001001 000(毫升)小结解决台体的问题通常要还台为锥,求面积时要注意侧面展开图的应用,上、下底面圆的周长是展开图的弧长跟踪训练3圆台的上、下底面半径分别为10 cm和20 cm.它的侧面展开图扇环的圆心角为180,那么圆台的表面积是多少?(结果中保留)解如图所示,设圆台的上底面周长为c,因为扇环的圆心角是180,故csa210,所以sa20,同理可得sb40,所以absbsa20,s表面积s侧s上s下(r1r2)abrr(1020)201022021 100(cm2)故圆台的表面积为1 100 cm2.例 已知圆柱轴截面的周长l为定值,则圆柱侧面积的最大值为()a.l2 b.l2c.l2 dl2答案c解析设圆柱的底面半径为r,高是h,由其轴截面周长为l,可得4r2hl,h,s2rhr(l4r)易得当r时,s最大值为l2.例 如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为()a81 b100 c14 d169答案b解析圆台的轴截面如图,设上底半径为r,则下底半径为4r,高为4r.因为母线长为10,所以在轴截面等腰梯形中,有102(4r)2(4rr)2.解得r2.所以s圆台侧(r4r)10100,故选b.例 一个长方体的长、宽、高分别为3,8,9,若沿其一对面钻一个圆柱形孔后其表面积没有变化,则孔的半径为()a3 b8 c9 d3或8或9答案a解析要使几何体的表面积不发生变化,则圆柱的两底面面积之和等于圆柱的侧面积设圆柱的底面半径为r,则2r22rh,即rh.还需检验:当h9时,在长为8,宽为3的面上不可能截得半径为9的孔;当h8时,在长为9,宽为3的面上也不可能截得半径为8的孔;当h3时,在长为9,宽为8的面上可以截得半径为3的孔故正确答案为a.例 一个圆台的上、下底面面积分别是 cm2和49 cm2,一个平行于底面的截面面积为25 cm2,则这个截面与上、下底面的距离之比是()a21 b31c. 1 d. 1答案a解析将圆台补成圆锥形成三个小锥体,它们的底面积之比为12549,因此高之比为157,所以截面与上、下底面的距离之比为42即21,故选a.例 用一张48(cm2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是_答案cm2解析设卷成圆柱的底面半径r,母线长为l,则s侧2rl32,s轴2rl(cm2)例 已知圆锥的全面积是底面积的3倍,那么这个圆锥的侧面展开图扇形的圆心角为_答案180解析由题意知,rl2r2l2r,360180.例 面积为2的菱形,绕其一边旋转一周,所得几何体的表面积是_答案8解析如图,设菱形abcd边长为m,ad边上高beh,则mh2,其表面积s2hm2(hm)8.例 如图,一直角梯形abcd的上、下底分别为cd,ab3,高ad2,求以腰bc所在直线为轴旋转一周所形成的旋转体的表面积解析由题设abc30,bc4,分别过a、d作ambc,dnbc,垂足为m、n,则am,dn,所求旋转体的表面积由三部分构成圆锥bam的侧面积s1amab.圆台mn的侧面积s2(amdn)ad4.圆锥cdn的侧面积s3dncds表s1s2s3(154).例 轴截面是正方形的圆柱叫等边圆柱已知:等边圆柱的底面半径为r,求:全面积;轴截面是正三角形的圆锥叫等边圆锥.已知:等边圆锥底面半径为r,求:全面积 解:解:例 一个高为2的圆柱,底面周长为2.该圆柱的表面积为_解析先求出圆柱的底面半径,再应用圆柱的表面积计算公式求解设圆柱的底面半径为r,高为h.由2r2得r1,s圆柱表2r22rh246.例 若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的全面积为_答案3解析已知正三角形的面积求其边长,然后利用圆锥的母线,底面半径与轴截面三角形之间的关系,根据圆锥的全面积公式可求如图,设圆锥轴截面三角形的边长为a,则a2,a24,a2.圆锥的全面积为s()2a3.三、由三视图还原几何体再求相关问题例1 (2012广州高一检测)一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为()a12 b18c24 d36解析由三视图知该几何体为圆锥,底面半径r3,母线l5,s表rlr224.故选c.答案c例2 (2012温州检测(二)如图所示,一个空间几何体的正(主)视图和侧(左)视图都是边长为2的正方形,俯视图是一个直径为2的圆,则这个几何体的全面积为()a2 b4 c6 d8解析由三视图知该空间几何体为圆柱,所以其全面积为1222126,故选c.答案c例3 一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是()a(8016)cm2 b84 cm2c(9616)cm2 d96 cm2解析该几何体是四棱锥与正方体的组合,s表面积42548016.答案:a例4 (2012辽宁)一个几何体的三视图如图所示,则该几何体的表面积为_解析由三视图可以看出该几何体为一个长方体从中间挖掉了一个圆柱,长方体表面积为2(433141)38,圆柱的侧面积为2,上下两个底面积和为2,所以该几何体的表面积为382238.答案38例5 (2012安徽)某几何体的三视图如图所示,该几何体的表面积是_答案92解析由三视图可知,该几何体为底面是直角梯形且侧棱垂直于底面的棱柱,该几何体的表面积为s2(25)4254492. 例6 一个空间几何体的三视图如图所示,则该几何体的表面积为()a48b328c488 d80【解析】由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱,所以该直四棱柱的表面积为s2(24)4442424488.【答案】c例7 (2012安徽)某几何体的三视图如图所示,该几何体的表面积是_答案92解析由三视图可知,该几何体为底面是直角梯形且侧棱垂直于底面的棱柱,该几何体的表面积为s2(25)4254492.例 (2012福建文数)若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )a b2 c d6【答案】d【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,选d【命题意图】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。例 (2012福建理数)若一个底面是正三角形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碌曲县2025年数学五年级第二学期期末经典试题含答案
- 长春建筑学院《形体训练1》2023-2024学年第二学期期末试卷
- 襄阳科技职业学院《中西医结合耳鼻咽喉科学》2023-2024学年第一学期期末试卷
- 伊吾县2025届数学五年级第二学期期末学业水平测试试题含答案
- 浙江省杭州市富阳区2025届初三调研测试(二)物理试题文试题含解析
- 骨科机器人手术个案护理
- 销售新人培训方案
- 煤矿安全规程培训课件
- 淘宝售后规则培训
- 物流订单管理培训课件
- 《三角形的外角》优秀课件
- 如何进行社会调查研究课件
- 鹌鹑蛋脱壳机的设计
- 项目管理进度表模板(全流程)
- 行为安全观察behaviorbasedsafety研究复习过程
- 锅炉专业术语解释及英文翻译对照
- 《小石潭记》作业设计
- 体育测量与评价PPT课件-第五章身体素质的测量与评价
- 过程分层审核检查表
- 气井地面排采技术方案
- 旅行社等级评定申报材料完整版
评论
0/150
提交评论