



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程优质课教案设计 21.1一元二次方程 初中数学 人教2011课标版 1教学目标 了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目 1通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义 2一元二次方程的一般形式及其有关概念 3解决一些概念性的题目 4通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情2学情分析 本课通过丰富的实例:花边有多宽、梯子的底端滑动多少米 ,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想。学生在以前的学习中已经了解了方程的概念,但对于一元二次方程没有深入的理解。通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效模型。3 1重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题 2难点:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念4教学过程 4.1 第一学时 评论(0) 新设计 教学过程 一、复习引入 学生活动:列方程问题1、教室里有?名教师,每一位教师相互握手一次表示问好,则问好结束时,老师们共握手多少次?2、如果教师们共握手210次,则有多少名教师呢?如果设教师为x名,则可列方程为?化简后是?二、探索新知(一)自主学习 学生活动:请口答下面问题 (1)上面三个方程整理后含有几个未知数? (2)按照整式中的多项式的规定,它们最高次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式 一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项 例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项 分析:一元二次方程的一般形式是ax2+bx+c=0(a0)因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号. 例2(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项 分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式 解:略 三、巩固练习教材 练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2- =0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0四、应用拓展 例3求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程 分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可 证明:m2-8m+17=(m-4)2+1 (m-4)20 (m-4)2+10,即(m-4)2+10不论m取何值,该方程都是一元二次方程练习: 1.方程(2a4)x22bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程? 2.当m为何值时,方程(m+1)x4m-4+27mx+5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 流动货摊社会媒体营销策略考核试卷
- 生物质能源在城乡一体化能源规划中的应用考核试卷
- 宽带接入技术考核试卷
- 电容器在铁路信号系统中的信号放大技术考核试卷
- 皮革服装设计与消费者需求分析考核试卷
- 灯具的博物馆与展览照明设计考核试卷
- 文化展览创意实践探讨考核试卷
- 医疗设备租赁设备租赁合同范本考核试卷
- 2025届福建省惠安一中等三校中学高考模拟考试(二)数学试题
- 2025二月份深基坑水平支撑拆除劳务安全协议
- 特种设备(承压类)生产单位安全风险管控(日管控、周排查、月调度)清单
- 小升初语文:必考古诗词专项练习
- 教师工作压力及其积极应对课件
- 南通大学附属医院新增PET-CT及CT诊断项目环评报告
- 保健院关于成立实验室生物安全管理委员会通知
- 2023年防腐防火涂装、钢结构变形检测试卷及答案
- 湖北武汉建筑工程施工统一用表资料目录
- 钻井队关键岗位人员培训考试试题及答案
- 质量检验报告
- 2023年全国电力生产人身伤亡事故统计
- 机械加工企业风险分级管控制度
评论
0/150
提交评论